Skip to main content
Log in

Influence of cell volume changes on protein synthesis in isolated hepatocytes of air-breathing walking catfish (Clarias batrachus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present study aimed at determining the effect of cell volume changes on protein synthesis, measured as the incorporation of [3H]leucine into acid-precipitable protein, in isolated hepatocytes of air-breathing walking catfish (Clarias batrachus). The rate of protein synthesis, which was recorded to be 10.02 ± 0.10 (n = 25) nmoles mg−1 cell protein h−1 in isotonic incubation conditions, increased/decreased significantly by 18 and 48%, respectively, following hypo- (−80 mOsmol l−1)/hypertonic (+80 mOsmol l−1) incubation conditions (adjusted with NaCl), with an accompanying increase/decrease of hepatic cell volume by 12 and 20%, respectively. Similar cell volume-sensitive changes of protein synthesis were also observed when the anisotonicity of incubation medium was adjusted with mannitol. Increase of hepatic cell volume by 9%, due to addition of glutamine plus glycine (5 mM each) to the isotonic control incubation medium, led to a significant increase of protein synthesis by 14%. Decrease of hepatic cell volume by 15 and 18%, due to addition of dibutyl-cAMP and adenosine in isotonic control incubation medium, led to a significant decrease of protein synthesis by 30 and 34%, respectively. Thus, it appears that the increase/decrease of hepatic cell volume, caused either by changing the extracellular osmolarity or by the presence of amino acids or certain other metabolites, leads to increase/decrease of protein synthesis, respectively, and shows a direct correction (r = 0.99) between the hepatic cell volume and protein synthesis in walking catfish. These cell volume-sensitive changes of protein synthesis probably help this walking catfish in fine tuning the different metabolic pathways for better adaptation during cell volume changes and also to avoid the adverse affects of osmotic stress. This is the first report of cell volume-sensitive changes of protein synthesis in hepatic cells of any teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ballatori N, Boyer JL (1992) Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence. Am J Physiol 262:G451–G460

    CAS  PubMed  Google Scholar 

  • Bianchini L, Fossat B, Porthé-Nibelle J, Ellory JC, Lahlou B (1988) Effects of hyposmotic shock on ion fluxes in isolated trout hepatocytes. J Exp Biol 137:303–318

    CAS  PubMed  Google Scholar 

  • Biswas K, Khongsngi JL, Häussinger D, Saha N (2008) Influence of cell volume changes on autophagic proteolysis in the perfused liver of air-breathing walking catfish (Clarias batrachus). J Exp Zool. doi:10.1002/jez.508

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Weaver YR, Lykkeboe G, Nielsen OB (1994) Role of protein phosphorylation in control of K+ flux pathways of trout red blood cells. Am J Physiol 267:C1641–C1650

    CAS  PubMed  Google Scholar 

  • Espelt MV, Mut PN, Amodeo G, Krumschnabel G, Schwarzbaum PJ (2003) Volumetric and ionic responses of goldfish hepatocytes to anisotonic exposure and energetic limitation. J Exp Biol 206:513–522. doi:10.1242/jeb.00117

    Article  CAS  PubMed  Google Scholar 

  • Fossat B, Porthé-Nibelle J, Pederson S, Lahlou S (1997) Na+/H+ exchange and osmotic shrinkage in isolated trout hepatocytes. J Exp Biol 200:2369–2376

    CAS  PubMed  Google Scholar 

  • Fugelli K, Thoroed SM (1986) Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J Physiol 374:245–261

    CAS  PubMed  Google Scholar 

  • Goswami C, Saha N (1998) Glucose, pyruvate and lactate efflux by the perfused liver of a teleost, Clarias batrachus during aniso-osmotic exposure. Comp Biochem Physiol A 119:999–1007. doi:10.1016/S1095-6433(98)00017-8

    Article  Google Scholar 

  • Goswami C, Saha N (2006) Cell volume regulation in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions: roles of inorganic ions and taurine. J Biosci 31:589–598. doi:10.1007/BF02708411

    Article  CAS  PubMed  Google Scholar 

  • Goswami C, Datta S, Biswas K, Saha N (2004) Cell volume changes affect gluconeogenesis in the perfused liver of the catfish, Clarias batrachus. J Biosci 29:337–347. doi:10.1007/BF02702616

    Article  CAS  PubMed  Google Scholar 

  • Graf J, Haddad P, Häussinger D, Lang F (1988) Cell volume regulation in liver. Ren Physiol Biochem 11:202–220

    CAS  PubMed  Google Scholar 

  • Hallgren N, Busty ER, Mommsen TP (2003) Cell volume affects glycogen phosphorylase activity in fish hepatocytes. J Comp Physiol [B] 173:591–599. doi:10.1007/s00360-003-0369-1

    CAS  Google Scholar 

  • Häussinger D, Lang F (1991) Cell volume in the regulation of hepatic cell function: a new mechanism for metabolic control. Biochim Biophys Acta 1071:331–350

    PubMed  Google Scholar 

  • Häussinger D, Lang F, Gerok W (1994) Regulation of cell function by the cellular hydration state. Am J Physiol 267:E343–E355

    PubMed  Google Scholar 

  • Haynes JK, Goldstein L (1993) Volume-regulatory amino acid transport in erythrocytes of the little skate, Raja erinacea. Am J Physiol 265:R173–R179

    CAS  PubMed  Google Scholar 

  • Jefferson LS, Korner A (1969) Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver. Biochem J 111:703–712

    CAS  PubMed  Google Scholar 

  • Kanli H, Norderhus E (1998) Cell volume regulation in proximal renal tubules from trout (Salmo trutta). J Exp Biol 201:1405–1419

    CAS  PubMed  Google Scholar 

  • Kanli H, Terreros DA (1997) Transepithelial transport and cell volume control in proximal renal tubules from the teleost Carassius auratus. Acta Physiol Scand 160:267–276. doi:10.1046/j.1365-201X.1997.00155.x

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (1990) Mechanism of the inhibition of protein synthesis by vasopressin in rat liver. J Biol Chem 265:16794–16798

    CAS  PubMed  Google Scholar 

  • Krumschnabel G, Biasi C, Wieser W (2000) Action of adenosine on energetics, protein synthesis and K+ homeostasis in teleosts hepatocytes. J Exp Biol 203:2657–2665

    CAS  PubMed  Google Scholar 

  • Kruppa J, Clemens MJ (1984) Differential kinetics of changes in the state of phosphorylation of ribosomal protein S6 and in the rate of protein synthesis in MPC 11 cells during tonicity shifts. EMBO J 3:95–100

    CAS  PubMed  Google Scholar 

  • Lionetto MG, Giordona ME, Nicolardi G, Schettino T (2001) Hypertonicity stimulates Cl(-) transport in the intestine of fresh water acclimated eel, Anguilla anguilla. Cell Physiol Biochem 11:41–54. doi:10.1159/000047791

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Pedersen SF, Hoffmann EK, Giordano ME, Schettino T (2002) Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium. Cell Physiol Biochem 12:163–178. doi:10.1159/000066276

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Giordano ME, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T (2005) Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. J Exp Biol 208:749–760. doi:10.1242/jeb.01440

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Gustafson LA, Luiken JJ, Blommaart PJE, Caro LHP, van Woerkom GM, Spronk C, Boon L (1993) Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur J Biochem 215:449–454. doi:10.1111/j.1432-1033.1993.tb18053.x

    Article  CAS  PubMed  Google Scholar 

  • Mommsen TP, Danulat E, Walsh PJ (1991) Hormonal regulation of metabolism in hepatocytes of the ureogenic teleost, Opsanus beta. Fish Physiol Biochem 9:247–252. doi:10.1007/BF02265145

    Article  CAS  Google Scholar 

  • Motais R, Guizouarn H, Garcia-Romeu F (1991) Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Biochim Biophys Acta 1075:169–180

    CAS  PubMed  Google Scholar 

  • Munro HN (1968) Role of amino acid supply in regulating ribosome function. Fed Proc Fed Am Soc Exp Biol 27:1231–1237

    CAS  Google Scholar 

  • Nuss DL, Koch G (1976) Variation in the relative synthesis of immunoglobulin G and non-immunoglobulin G proteins in cultured MPC-11 cells with changes in the overall rate of polypeptide chain initiation and elongation. J Mol Biol 102:601–612. doi:10.1016/0022-2836(76)90337-5

    Article  CAS  PubMed  Google Scholar 

  • Saborio JL, Pong SS, Koch G (1974) Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J Mol Biol 85:195–211. doi:10.1016/0022-2836(74)90360-X

    Article  CAS  PubMed  Google Scholar 

  • Saha N, Goswami C (2004) Effects of anisotonicity on pentose-phosphate pathway, oxidized glutathione release and t-butylhydroperoxide-induced oxidative stress in the perfused liver of air-breathing catfish, Clarias batrachus. J Biosci 29:179–187. doi:10.1007/BF02703416

    Article  CAS  PubMed  Google Scholar 

  • Saha N, Ratha BK (1998) Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp Biochem Physiol A 120:195–208. doi:10.1016/S1095-6433(98)00026-9

    Article  Google Scholar 

  • Saha N, Ratha BK (2007) Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes. Fish Physiol Biochem 33:283–295. doi:10.1007/s10695-007-9172-3

    Article  CAS  Google Scholar 

  • Saha N, Stoll B, Lang F, Häussinger D (1992) Effects of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose phosphate shunt in perfused rat liver. Eur J Biochem 209:437–444. doi:10.1111/j.1432-1033.1992.tb17307.x

    Article  CAS  PubMed  Google Scholar 

  • Saha N, Dkhar J, Ratha BK (1995) Induction of ureogenesis in perfused liver of a freshwater teleost, Heteropneustes fossilis, infused with different concentrations of ammonium chloride. Comp Biochem Physiol B 112:733–741. doi:10.1016/0305-0491(95)00115-8

    Article  Google Scholar 

  • Saha N, Dutta S, Bhattacharjee A (2002) Role of amino acid metabolism in an air-breathing catfish, Clarias batrachus in response to exposure to a high concentration of exogenous ammonia. Comp Biochem Physiol B 133:235–250

    Article  PubMed  Google Scholar 

  • Schliess F, Häussinger D (2003) Cell volume and insulin signaling. Int Rev Cytol 225:187–228. doi:10.1016/S0074-7696(05)25005-2

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO (1978) Effects of amino acids, ammonia and leupeptin on protein synthesis and degradation in isolated rat hepatocytes. Biochem J 174:469–474

    CAS  PubMed  Google Scholar 

  • Stoll B, Gerok W, Lang F, Häussinger D (1992) Liver cell volume and protein synthesis. Biochem J 287:217–222

    CAS  PubMed  Google Scholar 

  • Trischitta F, Denaro MG, Faggio C (2004) Ion transport in the intestine of Gobius niger in both isotonic and hypotonic conditions. J Exp Zool A301:49–62. doi:10.1002/jez.a.20002

    Article  Google Scholar 

  • Wettstein M, vom Dahl S, Lang F, Gerok W, Häussinger D (1990) Cell volume regulatory responses of isolated perfused rat liver: the effect of amino acids. Biol Chem Hoppe Seyler 371:493–501

    CAS  PubMed  Google Scholar 

  • Woodside KH, Ward WF, Mortimore GE (1974) Effects of glucagon on general protein degradation and synthesis in perfused rat liver. J Biol Chem 249:5458–5463

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a project sanctioned to N.S. by the Department of Science and Technology, New Delhi, the DSA programme to the Department of Zoology and the UPE-Bioscience project to the North-Eastern Hill University, Shillong by the University Grants Commission, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalendu Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, K., Jyrwa, L.M., Häussinger, D. et al. Influence of cell volume changes on protein synthesis in isolated hepatocytes of air-breathing walking catfish (Clarias batrachus). Fish Physiol Biochem 36, 17–27 (2010). https://doi.org/10.1007/s10695-008-9275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9275-5

Keywords

Navigation