Skip to main content

Advertisement

Log in

Polymeric materials of the future based on renewable plant resources and biotechnologies: Fibres, films, plastics

  • Memorial Conference Dedicated to the 100th Birthday of Z. A. Rogovin
  • Published:
Fibre Chemistry Aims and scope

Abstract

I begin with what Zakhar Aleksandrovich Rogovin said back in 1967: Natural polymers have the widest raw materials base. In contrast to the raw material used for manufacturing different types of synthetic polymers (natural gas, crude oil, coal) which are gradually being depleted despite the large reserves and cannot be restored in future decades and even centuries, the raw material resources for isolation of natural polymers (celluloses in particular) will not diminish when utilized rationally but can be renewed in any practically required quantities in very short times” [1]. Who could say it better!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Rogovin, New Cellulose Materials [in Russian], Znanie, Moscow (1967).

    Google Scholar 

  2. K. E. Perepelkin, in: 4th International Symposium “Materials from Renewable Resources,” September 11–12, 2003, CD-disk, Section 4-01, Messe Erfurt (2003), pp. 1–15.

  3. K. E. Perepelkin, Khim. Volokna, No. 3, 1–15 (2004).

  4. K. E. Perepelkin, The Past, Present, and Future of Chemical Fibres [in Russian], MGTU, Moscow (2004).

    Google Scholar 

  5. K. E. Perepelkin, in: International Conference “Fibrous Materials — XXI Century, May 24–27, 2005, CD-Disk, Plenary Lecture, St. Petersburg State University of Technology and Design, St. Petersburg (2005), pp. 1–24.

    Google Scholar 

  6. K. M. Malin, Human Vital Resources [in Russian], Izd. Akad. Nauk SSSR, Moscow (1961).

    Google Scholar 

  7. “Vegetation. Cellulose (articles),” in: Encyclopedic Dictionary of Biology [in Russian], Izd. BSE, Moscow (1986).

  8. C. Woodings (ed.), Regenerated Cellulose Fibres, Woodhead, Cambridge (2000).

    Google Scholar 

  9. V. P. Salovarova and Yu. P. Kozlov, Ecological and Biotechnological Principles of Conversion of Plant Substrates [in Russian], Izd. Un-ta Druzhby Narodov, Moscow (2001).

    Google Scholar 

  10. A. I. Osadchaya, V. S. Podgorskii, et al., in: Biotechnological Utilization of Agricultural Wastes [in Russian], V. S. Podgorskii and V. N. Ivanov (eds.), Naukova Dumka, Kiev (1990).

    Google Scholar 

  11. N. I. Nikitin, Wood Chemistry [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1962).

    Google Scholar 

  12. H. Zoebelein (ed.), Dictionary of Renewable Resources, 2nd ed., Wiley-VCH, Einheim (2001).

    Google Scholar 

  13. Encyclopedia of Polymers [in Russian], Vols. 1–3, Izd. BSE, Moscow (1973–1977).

  14. Encyclopedia of Chemistry [in Russian], Vols. 1–5, Izd. BSE/BRE, Moscow (1988–1998).

  15. V. I. Sharkov, S. A. Sapotnitskii, et al., Hydrolysis Plant Technology [in Russian], Lesnaya Prom-st’, Moscow (1973).

    Google Scholar 

  16. J. F. Kennedy, G. O. Phillips, and P. A. Williams (eds.), The Chemistry and Processing of Wood and Plant Fibrous Material, Woodhead, Cambridge (1996).

    Google Scholar 

  17. A. A. Vyrodov, et al., Wood Chemical Plant Technology [in Russian], Lesnaya Prom-st’, Moscow (1987).

    Google Scholar 

  18. L. V. Gordon, S. O. Skvortsov, and V. I. Lisov, Wood Chemical Plant Technology and equipment [in Russian], Lesnaya Prom-st’, Moscow (1988).

    Google Scholar 

  19. R. Ya. Pernikis, Oligomers and Polymers from Sugar Anhydrides [in Russian], Zinatne, Riga (1976).

    Google Scholar 

  20. R. Ya. Pernikis, Studies of Levoglucosan Oligomers and Polymers, Doctoral Dissertation, Institute of Organoelemental Compounds, Russian Academy of Sciences, Moscow (1980).

    Google Scholar 

  21. V. V. Biryukov, Principles of Industrial Biotechnology [in Russian], Kolos, Moscow (2004).

    Google Scholar 

  22. V. P. Salovarova and Yu. P. Kozlov, Environmental and Biotechnological Principles of Conversion of Plant Substrates [in Russian], Izd. Ros. Un-ta Druzhby Narodov, Moscow (2003).

    Google Scholar 

  23. B. R. Glick and J. J. Pasternak, Molecular Biotechnology. Principles and Applications of Recombinant DNA, CAN Press, Washington (1998).

    Google Scholar 

  24. V. I. Yakovlev, Microbiological Synthesis Technology [in Russian], Khimiya, Leningrad (1983).

    Google Scholar 

  25. M. S. Mosichev, A. A. Skladnev, and V. B. Kotov, General Microbiological Plant Technology [in Russian], Leg. i Pishch. Prom-st’, Moscow (1982).

    Google Scholar 

  26. T. G. Volova, V. I. Sevast’yanov, and E. I. Shishatskaya, Polyalkanoates (POA) — Biodegradable Polymers for Medicine [in Russian], Izd. Sib. Otd. RAN, Novosibirsk (2002).

    Google Scholar 

  27. V. Doi, Microbial Polyesters, VCH, New York (1990).

    Google Scholar 

  28. E. A. Daves (ed.), Novel Biodegradable Microbial Polymers, Kluver Academic, Dordrecht (1990).

    Google Scholar 

  29. B. E. Geller, Khim. Volokna, No. 5, 3–14 (1996).

  30. I. I. Shamolina, Khim. Volokna, No. 1, 3–10 (1997).

  31. K. Yamanaka, Chem. Fibers Intern., 49, No. 6, 501–506 (1999).

    CAS  Google Scholar 

  32. M. Dartee, J. Lunt, and A. Shafer, Chem. Fibers Intern., 50, No. 6, 546–551 (2000).

    CAS  Google Scholar 

  33. R. Hagen, Man-Made Fiber Year Book, Chem. Fibers Intern. (2001), pp. 6–8.

  34. M. Dartee, J. Lunt, and A. Shafer, Man-Made Fiber Year Book, Chem. Fibers Intern. (2001), pp. 29–31.

  35. K. E. Perpelkin, Khim. Volokna, No. 2, 12–24 (2002).

  36. B. Linnemann, M. Sri Harwoko, and Th. Gries, Chem. Fibers Intern., 6, 426–433 (2003).

    Google Scholar 

  37. N. L. Kuz’mina, B. L. Biber, G. L. Abakumova, et al., Problems in Production and Use of Surgical Sutures [in Russian], Data Sheet, Ser. Chem. Fibre Industryry, NIITEKhim, Moscow (1989).

    Google Scholar 

  38. M. Dauner and H. Planck, in: Proceedings and Abstracts of Posters, Conference on Fibres and Textiles for the Future, Taampere, August 16–17, 2001, Tampere University of Technology (2001), pp. 147–158.

  39. V. V. Korshak and S. V. Vinogradova, Heterochain Polyesters [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 6, pp. 5–16, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Polymeric materials of the future based on renewable plant resources and biotechnologies: Fibres, films, plastics. Fibre Chem 37, 417–430 (2005). https://doi.org/10.1007/s10692-006-0014-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-006-0014-3

Keywords

Navigation