Skip to main content

Advertisement

Log in

A new POT1 germline mutation—expanding the spectrum of POT1-associated cancers

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Melanomas are associated with several hereditary conditions. We present a large family with several family members affected with primary melanomas and dysplastic nevi as well as thyroid cancer and other malignant tumors. Clinical work-up did not reveal a mutation in any of the genes usually considered with evaluation for predisposition to melanoma (BRCA1/2, CDKN2A, CDK4, PTEN, TP53). Whole exome sequencing of five affected family members showed a new variant in POT1. POT1 is associated with the telomere shelterin complex that regulates telomere protection and telomerase access. Germline mutations in POT1 were recently shown to be associated with hereditary predisposition to melanoma. Our findings support a role of POT1 germline mutations in cancer predisposition beyond melanoma development, suggesting a broader phenotype of the POT1-associated tumor predisposition syndrome that might also include thyroid cancer as well as possibly other malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Read J, Wadt KA, Hayward NK (2016) Melanoma genetics. J Med Genet 53(1):1–14. doi:10.1136/jmedgenet-2015-103150

    Article  CAS  PubMed  Google Scholar 

  2. Hu HH, Benfodda M, Dumaz N et al (2014) A large French case-control study emphasizes the role of rare Mc1R variants in melanoma risk. Biomed Res Int. doi:10.1155/2014/925716

    Google Scholar 

  3. Pasquali E, Garcia-Borron JC, Fargnoli MC et al (2015) MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer 136(3):618–631. doi:10.1002/ijc.29018

    CAS  PubMed  Google Scholar 

  4. Bertolotto C, Lesueur F, Giuliano S et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98. doi:10.1038/nature10539

    Article  CAS  PubMed  Google Scholar 

  5. Yokoyama S, Woods SL, Boyle GM et al (2011) A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480(7375):99–103. doi:10.1038/nature10630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein AM, Chan M, Harland M et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66(20):9818–9828. doi:10.1158/0008-5472.CAN-06-0494

    Article  CAS  PubMed  Google Scholar 

  7. Hussussian CJ, Struewing JP, Goldstein AM et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21. doi:10.1038/ng0994-15

    Article  CAS  PubMed  Google Scholar 

  8. Zuo L, Weger J, Yang Q et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99. doi:10.1038/ng0196-97

    Article  CAS  PubMed  Google Scholar 

  9. Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43(10):1022–1025. doi:10.1038/ng.912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiesner T, Obenauf AC, Murali R et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018–1021. doi:10.1038/ng.910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoude LG, Pritchard AL, Robles-Espinoza CD et al (2015) Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J Natl Cancer Inst. doi:10.1093/jnci/dju408

    PubMed  Google Scholar 

  12. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961. doi:10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  13. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959. doi:10.1126/science.1229259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robles-Espinoza CD, Harland M, Ramsay AJ et al (2014) POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 46(5):478–481. doi:10.1038/ng.2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi J, Yang XR, Ballew B et al (2014) Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 46(5):482–486. doi:10.1038/ng.2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen R, Im H, Snyder M (2015) Whole-exome enrichment with the Roche NimbleGen SeqCap EZ exome library SR platform. Cold Spring Harb Protoc 2015(7): 634–641. doi:10.1101/pdb.prot084855

    PubMed  Google Scholar 

  17. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tischler G, Durbin, R. (2014) Biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med. doi:10.1186/1751-0473-9-13

    PubMed Central  Google Scholar 

  19. Garrison E, Marth, G. (2012) Haplotype-based variant detection from short-read sequencing. arXiv Preprint arXiv 1207:3907

    Google Scholar 

  20. Tan A, Abecasis GR, Kang HM (2015) Unified representation of genetic variants. Bioinformatics 31(13):2202–2204. doi:10.1093/bioinformatics/btv112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. doi:10.1093/nar/gkq603

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ramsay AJ, Quesada V, Foronda M et al (2013) POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 45(5):526–530. doi:10.1038/ng.2584

    Article  CAS  PubMed  Google Scholar 

  23. Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126(1):63–77. doi:10.1016/j.cell.2006.04.044

    Article  CAS  PubMed  Google Scholar 

  24. Bainbridge MN, Armstrong GN, Gramatges MM et al (2015) Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst 107(1):384. doi:10.1093/jnci/dju384

    Article  PubMed  Google Scholar 

  25. Calvete O, Martinez P, Garcia-Pavia P et al (2015) A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nat Commun 6:8383. doi:10.1038/ncomms9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Speedy HE, Kinnersley B, Chubb D et al (2016) Germline mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood. doi:10.1182/blood-2016-01-695692

    PubMed  PubMed Central  Google Scholar 

  27. Petr EJ, Else T (2016) Genetic predisposition to endocrine tumors: diagnosis, surveillance and challenges in care. Semin Oncol 43(5):582–590. doi:10.1053/j.seminoncol.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Siolek M, Cybulski C, Gasior-Perczak D et al (2015) CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer 137(3):548–552. doi:10.1002/ijc.29426

    Article  CAS  PubMed  Google Scholar 

  29. Rio Frio T, Bahubeshi A, Kanellopoulou C et al (2011) DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305(1):68–77. doi:10.1001/jama.2010.1910

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Bishop J, Shan Y et al (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20(4):603–610 doi:10.1530/ERC-13-0210

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number P30CA046592. TE is sponsored by the American Heart Association (14SDG17990000) and the NIH (1R01HL130106-01). We thank the University of Michigan DNA Sequencing Core for performing sequencing analysis. We are thankful to our patients in our registries allowing us to work with them clinically and in research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Else.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest pertinent to the submitted work.

Additional information

Tremika Le-Shan Wilson, Namita Hattangady and Antonio Marcondes Lerario have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, T.LS., Hattangady, N., Lerario, A.M. et al. A new POT1 germline mutation—expanding the spectrum of POT1-associated cancers. Familial Cancer 16, 561–566 (2017). https://doi.org/10.1007/s10689-017-9984-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-9984-y

Keywords

Navigation