Skip to main content

Advertisement

Log in

The role of epigenetics in Lynch syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Recognition by Warthin of the familial clustering of colorectal and gynaecological cancers a century ago laid the foundation for the recognition of familial cancer. By tracking afflicted pedigrees, Lynch defined the clinical characteristics and argued for a heritable genetic component to this autosomal dominant cancer susceptibility condition, now termed Lynch syndrome. This was proven in the 1990s, with the discovery of deleterious germline mutations of the mismatch repair genes as its cause. Yet despite the genetic revolution at the turn of the twenty-first century, no pathogenic mutation was identifiable in approximately one-third of cases with suspected Lynch syndrome. In the past decade, the alternative mechanism of constitutional epimutation of the two major mismatch repair genes, MLH1 and MSH2, was identified in a proportion of these outstanding cases. This epigenetic defect, characterized by methylation and transcriptional inactivation of a single genetic allele within normal tissues, predisposes to the development of Lynch-type cancers. MSH2 and some MLH1 epimutations have been linked to genetic alterations within their vicinity and demonstrate dominant inheritance, whilst other MLH1 epimutations are reversible between generations and demonstrate non-Mendelian inheritance. This review charts the discovery of mismatch repair epimutations, their aetiological role in Lynch syndrome and the mechanistic basis for their variable inheritance patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lynch HT (1999) Hereditary nonpolyposis colorectal cancer (HNPCC). Cytogenet Cell Genet 86:130–135

    Article  PubMed  CAS  Google Scholar 

  2. Peltomaki P, Vasen HF (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on hereditary nonpolyposis colorectal cancer. Gastroenterology 113:1146–1158

    Article  PubMed  CAS  Google Scholar 

  3. Tannergard P, Liu T, Weger A, Nordenskjold M, Lindblom A (1997) Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum Genet 101:51–55

    Article  PubMed  CAS  Google Scholar 

  4. Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20:269–276

    Article  PubMed  Google Scholar 

  5. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  6. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122:135–140

    Article  PubMed  CAS  Google Scholar 

  7. Hesson LB, Hitchins MP, Ward RL (2010) Epimutations and cancer predisposition: importance and mechanisms. Curr Opin Genet Dev 20:290–298

    Article  PubMed  CAS  Google Scholar 

  8. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62:3925–3928

    PubMed  CAS  Google Scholar 

  9. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501

    Article  PubMed  CAS  Google Scholar 

  10. Hitchins M, Williams R, Cheong K, Halani N, Lin VA, Packham D, Ku S, Buckle A, Hawkins N, Burn J et al (2005) MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology 129:1392–1399

    Article  PubMed  CAS  Google Scholar 

  11. Miyakura Y, Sugano K, Akasu T, Yoshida T, Maekawa M, Saitoh S, Sasaki H, Nomizu T, Konishi F, Fujita S et al (2004) Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin Gastroenterol Hepatol 2:147–156

    Article  PubMed  CAS  Google Scholar 

  12. Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705

    Article  PubMed  CAS  Google Scholar 

  13. Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, Royer-Pokora B, Schulmann K, von Knebel-Doeberitz M, Dietmaier W et al (2008) Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16:804–811

    Article  PubMed  CAS  Google Scholar 

  14. Goel A, Nguyen TP, Leung HC, Nagasaka T, Rhees J, Hotchkiss E, Arnold M, Banerji P, Koi M, Kwok CT et al (2011) De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128:869–878

    Article  PubMed  CAS  Google Scholar 

  15. Hitchins MP, Ward RL (2007) Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat Genet 39:1289

    Article  PubMed  CAS  Google Scholar 

  16. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 20:200–213

    Article  PubMed  CAS  Google Scholar 

  17. Pineda M, Mur P, Iniesta MD, Borras E, Campos O, Vargas G, Iglesias S, Fernandez A, Gruber SB, Lazaro C, et al. (2012) MLH1 methylation screening is effective in identifying epimutation carriers. Eur J Hum Genet 20:1256–1264

    Google Scholar 

  18. Hitchins M, Owens S, Kwok CT, Godsmark G, Algar U, Ramesar R (2011). Identification of new cases of early-onset colorectal cancer with an MLH1 epimutation in an ethnically diverse South African cohort (dagger). Clin Genet 80:428–434

    Google Scholar 

  19. Ward RL, Dobbins T, Lindor NM, Rapkins RW, Hitchins MP (2013) Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry. Genet Med 15:25–35

    Google Scholar 

  20. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–r58

    Article  PubMed  CAS  Google Scholar 

  21. Valle L, Carbonell P, Fernandez V, Dotor AM, Sanz M, Benitez J, Urioste M (2007) MLH1 germline epimutations in selected patients with early-onset non-polyposis colorectal cancer. Clin Genet 71:232–237

    Article  PubMed  CAS  Google Scholar 

  22. Zhou HH, Yan SY, Zhou XY, Du X, Zhang TM, Cai X, Lu YM, Cai SJ, Shi DR (2008) MLH1 promoter germline-methylation in selected probands of Chinese hereditary non-polyposis colorectal cancer families. World J Gastroenterol 14:7329–7334

    Article  PubMed  CAS  Google Scholar 

  23. Gylling A, Ridanpaa M, Vierimaa O, Aittomaki K, Avela K, Kaariainen H, Laivuori H, Poyhonen M, Sallinen SL, Wallgren-Pettersson C et al (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124:2333–2340

    Article  PubMed  CAS  Google Scholar 

  24. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  PubMed  CAS  Google Scholar 

  25. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  26. Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The International Collaborative Group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  27. Wu PY, Zhang Z, Wang JM, Guo WW, Xiao N, He Q, Wang YP, Fan YM (2012) Germline promoter hypermethylation of tumor suppressor genes in gastric cancer. World J Gastroenterol 18:70–78

    Article  PubMed  CAS  Google Scholar 

  28. Hendriks Y, Franken P, Dierssen JW, De Leeuw W, Wijnen J, Dreef E, Tops C, Breuning M, Brocker-Vriends A, Vasen H et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162:469–477

    Article  PubMed  CAS  Google Scholar 

  29. Peltomaki P, Gao X, Mecklin JP (2001) Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Fam Cancer 1:9–15

    Article  PubMed  CAS  Google Scholar 

  30. Morak M, Koehler U, Schackert HK, Steinke V, Royer-Pokora B, Schulmann K, Kloor M, Hochter W, Weingart J, Keiling C et al (2011) Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. J Med Genet 48:513–519

    Article  PubMed  CAS  Google Scholar 

  31. Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L et al (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110:1020–1027

    Article  PubMed  CAS  Google Scholar 

  32. Ward R, Meagher A, Tomlinson I, O’Connor T, Norrie M, Wu R, Hawkins N (2001) Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 48:821–829

    Article  PubMed  CAS  Google Scholar 

  33. Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58:3455–3460

    PubMed  CAS  Google Scholar 

  34. McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA et al (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107

    Article  PubMed  CAS  Google Scholar 

  35. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  PubMed  CAS  Google Scholar 

  36. Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espin E, Armengol M et al (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668

    Article  PubMed  CAS  Google Scholar 

  37. Loughrey MB, Waring PM, Tan A, Trivett M, Kovalenko S, Beshay V, Young MA, McArthur G, Boussioutas A, Dobrovic A (2007) Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Fam Cancer 6:301–310

    Article  PubMed  CAS  Google Scholar 

  38. Wong JJ, Hawkins NJ, Ward RL, Hitchins MP (2011) Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Mod Pathol 24:396–411

    Article  PubMed  CAS  Google Scholar 

  39. Renkonen E, Zhang Y, Lohi H, Salovaara R, Abdel-Rahman WM, Nilbert M, Aittomaki K, Jarvinen HJ, Mecklin JP, Lindblom A et al (2003) Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 21:3629–3637

    Article  PubMed  CAS  Google Scholar 

  40. Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lonnqvist KE, Holinski-Feder E, Sutter C, McKinnon W, Duraisamy S et al (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129:537–549

    PubMed  CAS  Google Scholar 

  41. Crepin M, Dieu MC, Lejeune S, Escande F, Boidin D, Porchet N, Morin G, Manouvrier S, Mathieu M, Buisine MP (2012) Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility. Hum Mutat 33:180–188

    Article  PubMed  CAS  Google Scholar 

  42. Hitchins MP, Owens SE, Kwok CT, Godsmark G, Algar UF, Ramesar RS (2011) Identification of new cases of early-onset colorectal cancer with an MLH1 epimutation in an ethnically diverse South African cohort. Clin Genet 80:428–434

    Article  PubMed  CAS  Google Scholar 

  43. Niessen RC, Hofstra RM, Westers H, Ligtenberg MJ, Kooi K, Jager PO, de Groote ML, Dijkhuizen T, Olderode-Berends MJ, Hollema H et al (2009) Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer 48:737–744

    Article  PubMed  CAS  Google Scholar 

  44. van Roon EH, van Puijenbroek M, Middeldorp A, van Eijk R, de Meijer EJ, Erasmus D, Wouters KA, van Engeland M, Oosting J, Hes FJ et al (2010) Early onset MSI-H colon cancer with MLH1 promoter methylation, is there a genetic predisposition? BMC Cancer 10:180

    Article  PubMed  Google Scholar 

  45. Deng G, Peng E, Gum J, Terdiman J, Sleisenger M, Kim YS (2002) Methylation of hMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer. Br J Cancer 86:574–579

    Article  PubMed  CAS  Google Scholar 

  46. Tost J, Gut IG (2006) Analysis of gene-specific DNA methylation patterns by pyrosequencing(r) technology. Methods Mol Biol 373:89–102

    Google Scholar 

  47. Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25:456–462

    Article  PubMed  CAS  Google Scholar 

  48. Auclair J, Vaissiere T, Desseigne F, Lasset C, Bonadona V, Giraud S, Saurin JC, Joly MO, Leroux D, Faivre L et al (2011) Intensity-dependent constitutional MLH1 promoter methylation leads to early onset of colorectal cancer by affecting both alleles. Genes Chromosomes Cancer 50:178–185

    Article  PubMed  CAS  Google Scholar 

  49. Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP, Errami A (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 33:e128

    Article  PubMed  Google Scholar 

  50. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183

    Article  PubMed  CAS  Google Scholar 

  51. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41:112–117

    Article  PubMed  CAS  Google Scholar 

  52. Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N, Schackert HK, Steinke V, Holinski-Feder E, Morak M et al (2011) Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 12:49–55

    Article  PubMed  Google Scholar 

  53. Lynch HT, Riegert-Johnson DL, Snyder C, Lynch JF, Hagenkord J, Boland CR, Rhees J, Thibodeau SN, Boardman LA, Davies J et al (2011) Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am J Gastroenterol 106:1829–1836

    Article  PubMed  CAS  Google Scholar 

  54. Green RC, Green AG, Simms M, Pater A, Robb JD, Green JS (2003) Germline hMLH1 promoter mutation in a Newfoundland HNPCC kindred. Clin Genet 64:220–227

    Article  PubMed  CAS  Google Scholar 

  55. Muller-Koch Y, Kopp R, Lohse P, Baretton G, Stoetzer A, Aust D, Daum J, Kerker B, Gross M, Dietmeier W et al (2001) Sixteen rare sequence variants of the hMLH1 and hMSH2 genes found in a cohort of 254 suspected HNPCC (hereditary non-polyposis colorectal cancer) patients: mutations or polymorphisms? Eur J Med Res 6:473–482

    PubMed  CAS  Google Scholar 

  56. Fredriksson H, Ikonen T, Autio V, Matikainen MP, Helin HJ, Tammela TL, Koivisto PA, Schleutker J (2006) Identification of germline MLH1 alterations in familial prostate cancer. Eur J Cancer 42:2802–2806

    Article  PubMed  CAS  Google Scholar 

  57. Lee SC, Guo JY, Lim R, Soo R, Koay E, Salto-Tellez M, Leong A, Goh BC (2005) Clinical and molecular characteristics of hereditary non-polyposis colorectal cancer families in Southeast Asia. Clin Genet 68:137–145

    Article  PubMed  Google Scholar 

  58. Isidro G, Matos S, Goncalves V, Cavaleiro C, Antunes O, Marinho C, Soares J, Boavida MG (2003) Novel MLH1 mutations and a novel MSH2 polymorphism identified by SSCP and DHPLC in Portuguese HNPCC families. Hum Mutat 22:419–420

    Article  PubMed  CAS  Google Scholar 

  59. Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  PubMed  CAS  Google Scholar 

  60. Hitchins MP, Ward RL (2009) Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J Med Genet 46:793–802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Hitchins is funded by Career Development Fellowships from the Australian National Health and Medical Research Council and Cancer Institute NSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan P. Hitchins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 380 kb)

Appendix: Definition of terms

Appendix: Definition of terms

Epigenetics:

The stable changes in gene expression that occur independent of (but can be affected by) changes in the primary DNA sequence [5]. These changes are brought about by the attachment of various biochemical modifications to the DNA sequence, which include DNA methylation, and other chromatin modifications. This chapter will refer only to methylation.

Methylation:

A reversible biochemical modification to the cytosine nucleotide within the DNA sequence, which is universal to vertebrates. Methyl groups can be enzymatically added to or removed from cytosine bases in the genetic code, but occur primarily at cytosine–guanine (CpG) dinucleotides in mammals and are associated with transcriptional silencing of the DNA sequence.

Monoallelic methylation:

Methylation affecting a single allele/copy of a gene, as detected by linking CpG methylation to a single allele of a polymorphism or other genetic variant for which the subject is heterozygous.

Hemiallelic methylation:

Methylation of half of alleles, but not linked to a particular allele e.g. if the subject is uninformative for a polymorphism such that the two genetic alleles cannot be distinguished.

Epimutation:

An epigenetic aberration that results in a change in the transcriptional state of a gene. This can take the form of transcriptional silencing of a gene that is normally active, or conversely, reactivation of a gene that is normally silent [59].

Constitutional epimutation:

An epigenetic aberration present within normal somatic cells that causes/predisposes to disease, but neither precludes nor dictates that its origin is in the germline, or that it is distributed evenly throughout somatic tissues [7, 60].

Germline epimutation:

Origination in, or transmission through, the germline of an epigenetically intact epimutation (with epigenetic modifications remaining attached to the affected DNA sequence) [9].

Primary epimutation:

An epimutation that has arisen in the absence of any alteration to the DNA sequence in the locality of the epigenetic aberration.

Secondary/genetically-facilitated epimutation:

An epimutation that has arisen as a consequence of (or is accompanied by) a genetic alteration on the affected allele.

Allelic epigenetic mosaicism:

Variation in the epigenetic state (methylation status or levels) of a particular allele within a particular cell type or organism.

Haplotype:

A combination of alleles at multiple loci that are transmitted together on the same chromosome.

De novo:

Spontaneously arising; not inherited from a parent.

Allelic expression imbalance:

Relative loss or reduction in expression of one allele of a gene as compared to the other allele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitchins, M.P. The role of epigenetics in Lynch syndrome. Familial Cancer 12, 189–205 (2013). https://doi.org/10.1007/s10689-013-9613-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-013-9613-3

Keywords

Navigation