Skip to main content

Advertisement

Log in

Low penetrance alleles as risk modifiers in familial and sporadic breast cancer

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The aim of the study is to investigate the relevance of rs1056663 and rs2708861 HUS1 polymorphisms, and rs104548, rs2981582 and rs2910164 polymorphisms of CASP8, FGFR2 and micro RNA 146A genes, respectively, as risk modifiers in hereditary breast or ovarian cancer (BC/OC) and risk factors in sporadic BC. We performed a case–control study in 189 healthy controls (CG) and 538 BC/OC cases, 340 with familial history of BC/OC (130 carriers of BRCA1/2 mutations and 210 non-carriers) and 198 sporadic BC/OC. The polymorphisms were assessed by real-time PCR using primers and fluorescent-labelled hybridization probes. We found statistically significant differences between familial BC/OC and CG for rs1056663 and rs2708861 HSU1 polymorphisms and rs2981582 FGFR2 polymorphism, particularly in non-carriers of BRCA1/2 mutations. In this group we found statistical differences for rs1056663 HSU1 and rs2981582 FGFR2 polymorphisms (p-trend < 0.006). The logistic regression confirmed that rs2981582 FGFR2 polymorphism (OR = 2.09; 95 % CI 1.35, 3.20) and the interaction between rs1056663 and rs2708861 HUS1 polymorphisms increased the risk of cancer (OR = 1.87; 95 % CI 1.19, 2.92). Furthermore, we found that the presence of rs1056663 and rs2708861 HUS1 polymorphisms is associated with early age of presentation of BC (p = 0.015) in the group of non-carriers of BRCA1/2 mutations. In addition, no association of the polymorphisms studied in sporadic BC was observed. In conclusion, the HUS1 and FGFR2 polymorphisms act as risk BC modifiers in familial BC/OC, particularly in the group of non-carriers of BRCA1/2 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40:17–22

    Article  PubMed  CAS  Google Scholar 

  2. Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed  CAS  Google Scholar 

  3. Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  PubMed  CAS  Google Scholar 

  4. Mulligan AM, Couch FJ, Barrowdale D et al (2011) Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators and modifiers of BRCA1/2. Breast Cancer Res 13(6):R110 [Epub 2011 Nov 2]

    Article  PubMed  CAS  Google Scholar 

  5. Vega A, Salas A, Milne RL et al (2009) Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast cancer: a two-stage Spanish case–control study. Gynecol Oncol 112:210–214

    Article  PubMed  CAS  Google Scholar 

  6. Shen J, Ambrosone CB, DiCioccio RA et al (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29:1963–1966

    Article  PubMed  CAS  Google Scholar 

  7. OMIN: *603760 HYDROXYUREA-SENSITIVE 1, S. POMBE, HOMOLOG OF; HUS1. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=603760. Accessed 10 Feb 2012

  8. Zimmerman ES, Chen J, Andersen JL et al (2004) Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 24:9286–9294

    Article  PubMed  CAS  Google Scholar 

  9. OMIN: *601763 CASPASE 8, APOPTOSIS-RELATED CYSTEINE PROTEASE; CASP8. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=601763. Accessed 10 Feb 2012

  10. Pharoah P, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358:2796–2803

    Article  PubMed  CAS  Google Scholar 

  11. MacPherson G, Healey CS, Teare MD et al (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869

    Article  PubMed  CAS  Google Scholar 

  12. Engel Ch, Versmold B, Wappensschmidt B et al (2010) Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomark Prev 19:2859–2868

    Article  CAS  Google Scholar 

  13. OMIN *176943 FIBROBLAST GROWTH FACTOR RECEPTOR 2; FGFR2. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176943. Accessed 10 Feb 2012

  14. Hunter DJ, Kraft P, Jacobs KB et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed  CAS  Google Scholar 

  15. Cáncer Hereditario de Mama y Ovario (2008) En: Guia de Practica Clínica en Cáncer hereditario. Plan Oncológico Comunidad Valenciana. Generalitat. Conselleria de Sanitat, Generalitat Valenciana pp 32–55

  16. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects (2004) Disponible en: http://www.wma.net/e/policy/pdf/17c.pdf

  17. The breast cancer information core database, BIC. http://research.nhgri.nih.gov/bic/Member/index.shtml. Accessed 10 Feb 2012

  18. Ganguly A, Rock MJ, Prockop DJ (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci USA 90:10325–10329

    Article  PubMed  CAS  Google Scholar 

  19. Esteban Cardeñosa E, Bolufer Gilabert P, Palanca Suela S et al (2008) BRCA1 and BRCA2 mutations in families studied in the program of genetic counselling in cancer of the Valencian community (Spain). Med Clin (Barc) 130:121–126

    Article  Google Scholar 

  20. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed  Google Scholar 

  21. Shephard ND, Abo R, Rigas SH, Frank B, Lin WY, Brock IW, Shippen A, Balasubramanian SP, Reed MW, Bartram CR, Meindl A, Schmutzler RK, Engel C, Burwinkel B, Cannon-Albright LA, Allen-Brady K, Camp NJ, Cox A (2009) A breast cancer risk haplotype in the caspase-8 gene. Cancer Res 69:2724–2728

    Article  PubMed  CAS  Google Scholar 

  22. Catucci I, Yang R, Verderio P et al (2010) Evaluation of SNPs in miR-146a, miR196a2 and miR- 499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum Mutat 31:E1052–E1057

    Article  PubMed  Google Scholar 

  23. Huang J, Yuan H, Lu C, Liu X, Cao X, Wan M (2007) Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J Mol Biol 371:514–527

    Article  PubMed  CAS  Google Scholar 

  24. Palanca Suela S, Esteban Cardeñosa E, Barragán González E et al (2010) CASP8 D302H polymorphism delays the age of onset of breast cancer in BRCA1 and BRCA2 carriers. Breast Cancer Res Treat 119:87–93

    Article  PubMed  CAS  Google Scholar 

  25. Boyarskikh UA, Zarubina NA, Biltueva JA et al (2009) Association of FGFR2 gene polymorphisms with the risk of breast cancer in population of West Siberia. Eur J Hum Genet 17:1688–1691

    Article  PubMed  CAS  Google Scholar 

  26. Liang J, Chen P, Hu Z et al (2008) Genetic variants in fibroblast growth factor receptor 2 (FGFR2) contribute to susceptibility of breast cancer in Chinese women. Carcinogenesis 29:2341–2346

    Article  PubMed  CAS  Google Scholar 

  27. Grose R, Dickson C (2005) Fibroblast growth factor signalling in tumorigenesis. Cytokine Growth Factor Rev 16:179–186

    Article  PubMed  CAS  Google Scholar 

  28. Gao LB, Bai P, Pan XM et al (2011) The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125:571–574

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We should express here our gratitude for the good work and dedication of Alma María Olegario Serra, Degree in Biology, Gema Pérez Simó and Lidia González Martínez, laboratory technician, contracted by the project. This study has been funded by the grants from the “Fundación Gent per Gent” (Ref 40/09) and from the “Consellería de Sanitad de la Generalitat Valenciana para el Desarrollo de Proyectos de Investigación en Matería Sanitaria” (AP-181/10).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Bolufer Gilabert.

Additional information

This study is conducted on behalf of the Group for Assessment for Hereditary Cancer of Valencian Community.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban Cardeñosa, E., de Juan Jiménez, I., Palanca Suela, S. et al. Low penetrance alleles as risk modifiers in familial and sporadic breast cancer. Familial Cancer 11, 629–636 (2012). https://doi.org/10.1007/s10689-012-9563-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-012-9563-1

Keywords

Navigation