Skip to main content

Advertisement

Log in

Cometary plasma science

Open science questions for future space missions

Experimental Astronomy Aims and scope Submit manuscript

Abstract

Comets hold the key to the understanding of our Solar System, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma, and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains dust grains, released from the comet nucleus. As a cometary atmosphere develops when the comet travels through the Solar System, large-scale structures, such as the plasma boundaries, develop and disappear, while at planets such large-scale structures are only accessible in their fully grown, quasi-steady state. In situ measurements at comets enable us to learn both how such large-scale structures are formed or reformed and how small-scale processes in the plasma affect the formation and properties of these large scale structures. Furthermore, a comet goes through a wide range of parameter regimes during its life cycle, where either collisional processes, involving neutrals and charged particles, or collisionless processes are at play, and might even compete in complicated transitional regimes. Thus a comet presents a unique opportunity to study this parameter space, from an asteroid-like to a Mars- and Venus-like interaction. The Rosetta mission and previous fast flybys of comets have together made many new discoveries, but the most important breakthroughs in the understanding of cometary plasmas are yet to come. The Comet Interceptor mission will provide a sample of multi-point measurements at a comet, setting the stage for a multi-spacecraft mission to accompany a comet on its journey through the Solar System. This White Paper, submitted in response to the European Space Agency’s Voyage 2050 call, reviews the present-day knowledge of cometary plasmas, discusses the many questions that remain unanswered, and outlines a multi-spacecraft European Space Agency mission to accompany a comet that will answer these questions by combining both multi-spacecraft observations and a rendezvous mission, and at the same time advance our understanding of fundamental plasma physics and its role in planetary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alfvén, H.: On the origin of the solar system. Oxford University Press, Oxford (1954)

    MATH  Google Scholar 

  2. Alfvén, H.: On the theory of comet tails. Tellus 9 (1957)

  3. Alho, M., Simon Wedlund, C., Nilsson, H., Kallio, E., Jarvinen, R., Pulkkinen, T.: Hybrid modelling of cometary plasma environments. II. Remote sensing of a cometary bow shock. A&A 1. https://doi.org/10.1093/mnras/stx868(2019)

  4. André, M., Odelstad, E., Graham, D.B., Eriksson, A.I., Karlsson, T., Stenberg Wieser, G., Vigren, E., Norgren, C., Johansson, F.L., Henri, P., Rubin, M., Richter, I.: Lower hybrid waves at comet 67P/Churyumov-Gerasimenko. Mon. Not. Royal Astron. Soc. 469, S29–S38 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  5. Auster, H.U., Apathy, I., Berghofer, G., Fornacon, K.H., Remizov, A., Carr, C., Güttler, C., Haerendel, G., Heinisch, P., Hercik, D., Hilchenbach, M., Kührt, E., Magnes, W., Motschmann, U., Richter, I., Russell, C.T., Przyklenk, A., Schwingenschuh, K., Sierks, H., Glassmeier, K.H.: The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko. Science 349(1), 015102 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  6. Bale, S.D., Balikhin, M.A., Horbury, T.S., Krasnoselskikh, V.V., Kucharek, H., Möbius, E., Walker, S.N., Balogh, A., Burgess, D., Lembège, B., Lucek, E.A., Scholer, M., Schwartz7 10, S.J., Thomsen, M.F.: Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118(1), 161–203 (2005). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  7. Barabash, S., Fedorov, A., Sauvaud, J.J., Lundin, R., Russell, C.T., Futaana, Y., Zhang, T.L., Andersson, H., Brinkfeldt, K., Grigoriev, A., Holmström, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A.J., Kataria, D.O., Linder, D.R., Curtis, C.C., Hsieh, K.C., Sandel, B.R., Grande, M., Gunell, H., Koskinen, H.E.J., Kallio, E., Riihelä, P., Säles, T., Schmidt, W., Kozyra, J., Krupp, N., Fränz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.D., Frahm, R.A., Scherrer, J., Sharber, J.R., Wurz, P., Bochsler, P.: The loss of ions from Venus through the plasma wake. Nature 450(7170), 650–653 (2007). https://doi.org/10.1038/nature06434

    ADS  Google Scholar 

  8. Barkan, A., Merlino, R.L., D’Angelo, N.: Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563–3565 (1995). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  9. Behar, E., Nilsson, H., Alho, M., Goetz, C., Tsurutani, B.: The birth and growth of a solar wind cavity around a comet - Rosetta observations. MNRAS 469, S396–S403 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  10. Beth, A., Galand, M.: Effects of the convective field on weakly outgassing comets. Mon. Not. Royal Astron. Soc. 469, S824–S841 (2018). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  11. Beth, A., Altwegg, K., Balsiger, H., Berthelier, J.-J., Calmonte, U., Combi, M.R., De Keyser, J., Dhooghe, F., Fiethe, B., Fuselier, S.A., Galand, M., Gasc, S., Gombosi, T.I., Hansen, K.C., Hässig, M., Heritier, K.L., Kopp, E., Le Roy, L., Mandt, K.E., Peroy, S., Rubin, M., Sémon, T., Tzou, C.-Y., Vigren, E.: First in situ detection of the cometary ammonium ion NH\(_{4}^{+}\) (protonated ammonia NH3) in the coma of 67P/C-G near perihelion. Mon. Not. Royal Astron. Soc. 462(Suppl_1), S562–S572 (2016)

    Google Scholar 

  12. Beth, A., Galand, M., Heritier, K.: Comparative study of photo-produced ionosphere in the close environment of comets. A&A in press. https://doi.org/10.1051/0004-6361/201833517 (2018)

  13. Bieler, A., Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J.J., Bochsler, P., Briois, C., Calmonte, U., Combi, M., De Keyser, J., van Dishoeck, E.F., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Hansen, K.C., Hässig, M., Jäckel, A., Kopp, E., Korth, A., Le Roy, L., Mall, U., Maggiolo, R., Marty, B., Mousis, O., Owen, T., Rème, H., Rubin, M., Sémon, T., Tzou, C.Y., Waite, J.H., Walsh, C., Wurz, P.: Abundant molecular oxygen in the coma of comet 67p/churyumov-Gerasimenko. Nature 526, 678–681 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  14. Biermann, L.: Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik 29, 274 (1951)

    ADS  Google Scholar 

  15. Biermann, L., Brosowski, B., Schmidt, H.U.: The interactions of the solar wind with a comet. Sol. Phys. 1, 254–284 (1967). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  16. Boice, D.C., Goldstein, R., Schulz, R.: A cometary perspective of Enceladus. In: Fernández, J.A., Lazzaro, D., Prialnik, D. (eds.) IAU Symposium. https://doi.org/10.1093/mnras/stx868, vol. 263, pp 151–156 (2010)

  17. Brain, D.A., Bagenal, F., Ma, Y.J., Nilsson, H., Stenberg Wieser, G.: Atmospheric escape from unmagnetized bodies. J. Geophys. Res. (Planets) 121(12), 2364–2385 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  18. Breuillard, H., Henri, P., Bucciantini, L., Volwerk, M., Karlsson, T., Eriksson, A., Johansson, F., Odelstad, E., Richter, I., Goetz, C., Vallières, X., Hajra, R.: The properties of the singing comet waves in the 67P/Churyumov–Gerasimenko plasma environment as observed by the Rosetta mission. A&A. https://doi.org/10.1051/0004-6361/201834876 (2019)

  19. Broiles, T.W., Burch, J.L., Chae, K., Clark, G., Cravens, T.E., Eriksson, A., Fuselier, S.A., Frahm, R.A., Gasc, S., Goldstein, R., Henri, P., Koenders, C., Livadiotis, G., Mandt, K.E., Mokashi, P., Nemeth, Z., Odelstad, E., Rubin, M., Samara, M.: Statistical analysis of suprathermal electron drivers at 67P/Churyumov- Gerasimenko. MNRAS 462, S312–S322 (2016). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  20. Burch, J.L., Gombosi, T.I., Clark, G., Mokashi, P., Goldstein, R.: Observation of charged nanograins at comet 67p/churyumov-Gerasimenko. Geophys. Res. Lett. 42(16), 6575–6581 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  21. Coates, A.J.: Heavy ion effects on cometary shocks. Adv. Space Res. 15(8-9), 403–413 (1995). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  22. Coates, A.J., Jones, G.H.: Plasma environment of Jupiter family comets. Planet. Space Sci. 57, 1175–1191 (2009). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  23. Cravens, T.E.: The physics of the cometary contact surface. In: Battrick, B., Rolfe, E.J., Reinhard, R. (eds.) ESLAB Symposium on the Exploration of Halley’s Comet, vol. 250, p 241 (1986)

  24. Cravens, T.E.: Theory and observations of cometary ionospheres. Adv. Space Res. 7, 147–158 (1987). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  25. Cravens, T.E.: Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Adv. Space Res. 9(10), 293–298 (1989). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  26. Cravens, T.E.: Comet Hyakutake x-ray source: Charge transfer of solar wind heavy ions. Geophys. Res. Lett. 24, 105–108 (1997). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  27. De Keyser, J., Dhooghe, F., Altwegg, K., Balsiger, H., Berthelier, J.J., Briois, C., Calmonte, U., Cessateur, G., Combi, M.R., Equeter, E., Fiethe, B., Fuselier, S., Gasc, S., Gibbons, A., Gombosi, T., Gunell, H., Hässig, M., Le Roy, L., Maggiolo, R., Mall, U., Marty, B., Neefs, E., Rème, H., Rubin, M., Sémon, T., Tzou, C.Y., Wurz, P.: Evidence for distributed gas sources of hydrogen halides in the coma of comet 67p/churyumov-Gerasimenko. Mon. Not. Royal Astron. Soc. 469, S695–S711 (2017). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  28. Deca, J., Divin, A., Henri, P., Eriksson, A., Markidis, S., Olshevsky, V., Horányi, M: Electron and ion dynamics of the solar wind interaction with a weakly outgassing comet. Phys. Rev. Lett. 118, 205101 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  29. Deca, J., Henri, P., Divin, A., Eriksson, A., Galand, M., Beth, A., Ostaszewski, K., Horányi, M.: Building a weakly outgassing comet from a generalized ohm’s law. Phys. Rev. Lett. 123(5), 055101 (2019). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  30. Delva, M., Bertucci, C., Volwerk, M., Lundin, R., Mazelle, C., Romanelli, N.: Upstream proton cyclotron waves at venus near solar maximum. JGeophysRes (Space Physics) 120(1), 344–354 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  31. Dennerl, K.: Charge transfer reactions. Space Sci Rev 157, 57–91 (2010). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  32. Dhooghe, F., De Keyser, J., Altwegg, K., Briois, C., Balsiger, H., Berthelier, J.J., Calmonte, U., Cessateur, G., Combi, M.R., Equeter, E., Fiethe, B., Fray, N., Fuselier, S., Gasc, S., Gibbons, A., Gombosi, T., Gunell, H., Hässig, M., Hilchenbach, M., Le Roy, L., Maggiolo, R., Mall, U., Marty, B., Neefs, E., Rème, H., Rubin, M., Sémon, T., Tzou, C.Y., Wurz, P.: Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko. Mon. Not. Royal Astron. Soc. 472, 1336–1345 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  33. Eastwood, J.P., Lucek, E.A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J., Treumann, R.A.: The foreshock. Space Sci. Rev. 118 (1), 41–94 (2005). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  34. Edberg, N.J.T., Eriksson, A.I., Odelstad, E., Henri, P., Lebreton, J.P., Gasc, S., Rubin, M., André, M., Gill, R., Johansson, E.P.G., Johansson, F., Vigren, E., Wahlund, J.E., Carr, C.M., Cupido, E., Glassmeier, K.H., Goldstein, R., Koenders, C., Mandt, K., Nemeth, Z., Nilsson, H., Richter, I., Wieser, G.S., Szego, K., Volwerk, M.: Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements. Geophys. Res. Lett. 42, 4263–4269 (2015). https://doi.org/10.1002/2015GL064233, arXiv:1608.06745

    ADS  Google Scholar 

  35. Edberg, N.J.T., Alho, M., André, M., Andrews, D.J., Behar, E., Burch, J.L., Carr, C.M., Cupido, E., Engelhardt, I.A.D., Eriksson, A.I., Glassmeier, K.H., Goetz, C., Goldstein, R., Henri, P., Johansson, F.L., Koenders, C., Mandt, K., Möstl, C., Nilsson, H., Odelstad, E., Richter, I., Simon Wedlund, C., Stenberg Wieser, G., Szego, K., Vigren, E., Volwerk, M.: CME Impact on comet 67P/Churyumov-Gerasimenko. MNRAS 462, S45–S56 (2016). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  36. Ekenbäck, A., Holmström, M., Barabash, S., Gunell, H.: Energetic neutral atom imaging of comets. GeophysResLett 35, L05103 (2008). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  37. Engelhardt, I., Wahlund, J.E., Andrews, D., Eriksson, A., Ye, S., Kurth, W., Gurnett, D., Morooka, M., Farrell, W., Dougherty, M.: Plasma regions, charged dust and field-aligned currents near Enceladus. Planet. Space Sci. 117, 453–469 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  38. Engelhardt, I.A.D., Eriksson, A.I., Vigren, E., Valliéres, X., Rubin, M., Gilet, N., Henri, P.: Cold electrons at comet 67P/Churyumov-Gerasimenko. A&A 616, A51 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  39. Eriksson, A.I., Engelhardt, I.A.D., André, M, Boström, R., Edberg, N.J.T., Johansson, F.L., Odelstad, E., Vigren, E., Wahlund, J.E., Henri, P., Lebreton, J.P., Miloch, W.J., Paulsson, J.J.P., Simon Wedlund, C., Yang, L., Karlsson, T., Jarvinen, R., Broiles, T., Mandt, K., Carr, C.M., Galand, M., Nilsson, H., Norberg, C.: Cold and warm electrons at comet 67P/Churyumov-Gerasimenko. A&A 605, A15 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  40. Ershkovich, A.I., Flammer, K.R.: Nonlinear stability of the dayside cometary ionopause. Astrophys J 328, 967–973 (1988). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  41. Ershkovich, A.I., Mendis, D.A.: Effects of the interaction between plasma and neutrals on the stability of the cometary ionopause. Astrophys J 302, 849–852 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  42. Fulle, M., Marzari, F., Corte, V.D., Fornasier, S., Sierks, H., Rotundi, A., Barbieri, C., Lamy, P.L., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., López-Moreno, J.J., Accolla, M., Agarwal, J., A’Hearn, M.F., Altobelli, N., Barucci, M.A., Bertaux, J.L., Bertini, I., Bodewits, D., Bussoletti, E., Colangeli, L., Cosi, M., Cremonese, G., Crifo, J.F., Deppo, V.D., Davidsson, B., Debei, S., Cecco, M.D., Esposito, F., Ferrari, M., Giovane, F., Gustafson, B., Green, S.F., Groussin, O., Grün, E., Gutierrez, P., Güttler, C., Herranz, M.L., Hviid, S.F., Ip, W., Ivanovski, S.L., Jerónimo, J.M., Jorda, L., Knollenberg, J., Kramm, R., Kührt, E., Küppers, M., Lara, L., Lazzarin, M., Leese, M.R., López-Jiménez, A.C., Lucarelli, F., Epifani, E.M., McDonnell, J.A.M., Mennella, V., Molina, A., Morales, R., Moreno, F., Mottola, S., Naletto, G., Oklay, N., Ortiz, J.L., Palomba, E., Palumbo, P., Perrin, J.M., Rietmeijer, F.J.M., Rodríguez, J., Sordini, R., Thomas, N., Tubiana, C., Vincent, J.B., Weissman, P., Wenzel, K.P., Zakharov, V., Zarnecki, J.C.: Evolution of the dust size distribution of comet 67p/churyumov-gerasimenko from 2.2 au to perihelion. Astrophys. J. 821(1), 19 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  43. Fuselier, S.A., Funsten, H.O., Heirtzler, D., Janzen, P., Kucharek, H., McComas, D.J., Möbius, E, Moore, T.E., Petrinec, S.M., Reisenfeld, D.B., Schwadron, N.A., Trattner, K.J., Wurz, P.: Energetic neutral atoms from the Earth’s subsolar magnetopause. Geophys. Res. Lett. 37, L13101 (2010). https://doi.org/10.1029/2010GL044140

    ADS  Google Scholar 

  44. Fuselier, S.A., Altwegg, K., Balsiger, H., Berthelier, J.J., Bieler, A., Briois, C., Broiles, T.W., Burch, J.L., Calmonte, U., Cessateur, G., Combi, M., De Keyser, J., Fiethe, B., Galand, M., Gasc, S., Gombosi, T.I., Gunell, H., Hansen, K.C., Hässig, M., Jäckel, A., Korth, A., Le Roy, L., Mall, U., Mandt, K.E., Petrinec, S.M., Raghuram, S., Rème, H., Rinaldi, M., Rubin, M., Sémon, T., Trattner, K.J., Tzou, C.Y., Vigren, E., Waite, J.H., Wurz, P.: ROSINA/DFMS And IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet. Astron. Astrophys. 583, A2 (2015). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  45. Fuselier, S.A., Altwegg, K., Balsiger, H., Berthelier, J.J., Beth, A., Bieler, A., Briois, C., Broiles, T.W., Burch, J.L., Calmonte, U., Cessateur, G., Combi, M., De Keyser, J., Fiethe, B., Galand, M., Gasc, S., Gombosi, T.I., Gunell, H., Hansen, K.C., Hässig, M., Heritier, K.L., Korth, A., Le Roy, L., Luspay-Kuti, A., Mall, U., Mandt, K.E., Petrinec, S.M., Rème, H., Rinaldi, M., Rubin, M., Sémon, T., Trattner, K.J., Tzou, C.Y., Vigren, E., Waite, J.H., Wurz, P.: Ion chemistry in the coma of comet 67P near perihelion. Mon. Not. Royal Astron. Soc. 462, S67–S77 (2016). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  46. Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., Brandt, P.C., Gunell, H., Brinkfeldt, K., Lundin, R., Andersson, H., Yamauchi, M., McKenna-Lawler, S., Winningham, J.D., Frahm, R.A., Sharber, J.R., Scherrer, J., Coates, A.J., Linder, D.R., Kataria, D.O., Säles, T., Riihela, P., Schmidt, W., Koskinen, H., Kozyra, J., Luhmann, J., Roelof, E., Williams, D., Livi, S., Curtis, C.C., Hsieh, K., Sandel, B.R., Grande, M., Carter, M., Sauvaud, J.A., Fedorov, A., Thocaven, J.J., Orsini, S., Cerulli-Irelli, R., Maggi, M., Wurz, P., Bochsler, P., Krupp, N., Woch, J., Fränz, M., Asamura, K., Dierker, C.: First ENA observations at Mars: Subsolar ENA jet. Icarus 182, 413–423 (2006a). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  47. Futaana, Y., Barabash, S., Grigoriev, A., Winningham, D., Frahm, R., Yamauchi, M., Lundin, R.: Global response of Martian plasma environment to an interplanetary structure: From ena and plasma observations at Mars. Space Sci. Rev. 126(1-4), 315–332 (2006b). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  48. Galand, M., Héritier, K.L., Odelstad, E., Henri, P., Broiles, T.W., Allen, A.J., Altwegg, K., Beth, A., Burch, J.L., Carr, C.M., Cupido, E., Eriksson, A.I., Glassmeier, K.H., Johansson, F.L., Lebreton, J.P., Mandt, K.E., Nilsson, H., Richter, I., Rubin, M., Sagnières, L.B.M., Schwartz, S.J., Sémon, T., Tzou, C.Y., Vallières, X., Vigren, E., Wurz, P.: Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun. MNRAS 462, S331–S351 (2016). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  49. Galeev, A.A., Cravens, T.E., Gombosi, T.I.: Solar wind stagnation near comets. ApJ 289, 807–819 (1985). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  50. Galeev, A.A., Gringauz, K.I., Klimov, S.I., Remizov, A.P., Sagdeev, R.Z., Savin, S.P., Sokolov, A.Y., Verigin, M.I., Szegö, K., Tátrallyay, M.: Physical processes in the vicinity of the cometpause interpreted on the basis of plasma, magnetic field, and plasma wave data measured on board the vega 2 spacecraft. J. Geophys. Res. 93(A7), 7527–7531 (1988). https://doi.org/10.1029/JA093iA07p07527

    ADS  Google Scholar 

  51. Gan, L., Cravens, T.E.: Electron energetics in the inner coma of Comet Halley. J. Geophys. Res. 95, 6285–6303 (1990). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  52. Gilet, N., Henri, P., Wattieaux, G., Cilibrasi, M., Béghin, C.: Electrostatic potential radiated by a pulsating charge in a Two-Electron temperature plasma. Radio Sci. 52, 1432–1448 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  53. Glassmeier, K., Coates, A.J., Acuña, M.H., Goldstein, M.L., Johnstone, A.D., Neubauer, F.M., Rème, H: Spectral characteristics of low-frequency plasma turbulence upstream of comet P/Halley. J. Geophys. Res. 94, 37–48 (1989)

    ADS  Google Scholar 

  54. Glassmeier, K.H., Neubauer, F.M.: Low-frequency electromagnetic plasma waves at comet p/grigg-Skjellerup: Overview and spectral characteristics. J. Geophys. Res. 98(A12), 20921–20936 (1993). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  55. Glassmeier, K.H., Motschmann, U., Mazelle, C., Neubauer, F.M., Sauer, K., Fuselier, S.A., Acuña, M.H.: Mirror modes and fast magnetoacoustic waves near the magnetic pileup boundary of comet P/Halley. J. Geophys. Res. 98(A12), 20955–20964 (1993). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  56. Glassmeier, K.H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The rosetta mission: Flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  57. Gloeckler, G., Geiss, J., Schwadron, N.A., Fisk, L.A., Zurbuchen, T.H., Ipavich, F.M., von Steiger, R., Balsiger, H., Wilken, B.: Interception of comet Hyakutake’s ion tail at a distance of 500 million kilometres. Nature 404(6778), 576–578 (2000). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  58. Goetz, C., Koenders, C., Hansen, K.C., Burch, J., Carr, C., Eriksson, A., Frühauff, D., Güttler, C., Henri, P., Nilsson, H., Richter, I., Rubin, M., Sierks, H., Tsurutani, B., Volwerk, M., Glassmeier, K.H.: Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko. MNRAS 462, S459–S467 (2016a). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  59. Goetz, C., Koenders, C., Richter, I., Altwegg, K., Burch, J., Carr, C., Cupido, E., Eriksson, A., Güttler, C., Henri, P., Mokashi, P., Nemeth, Z., Nilsson, H., Rubin, M., Sierks, H., Tsurutani, B., Vallat, C., Volwerk, M., Glassmeier, K.H.: First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko. A&A 588, A24 (2016b). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  60. Goetz, C., Volwerk, M., Richter, I., Glassmeier, K.H.: Evolution of the magnetic field at comet 67P/Churyumov-Gerasimenko. MNRAS 469, S268–S275 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  61. Gombosi, T.I.: Charge exchange avalanche at the cometopause. Geophys. Res. Lett. 14(11), 1174–1177 (1987). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  62. Götz, C.: The plasma environment of comet 67P/Churyumov-Gerasimenko. PhD thesis, Technische Universität Braunschweig. https://doi.org/10.1093/mnras/stx868(2019)

  63. Gunell, H., Goetz, C., Eriksson, A., Nilsson, H., Simon Wedlund, C., Henri, P., Maggiolo, R., Hamrin, M., De Keyser, J., Rubin, M., Stenberg Wieser, G., Cessateur, G., Dhooghe, F., Gibbons, A.: Plasma waves confined to the diamagnetic cavity of comet 67P/Churyumov- Gerasimenko. MNRAS 469, S84–S92 (2017a). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  64. Gunell, H., Nilsson, H., Hamrin, M., Eriksson, A., Odelstad, E., Maggiolo, R., Henri, P., Vallières, X., Altwegg, K., Tzou, C.Y., Rubin, M., Glassmeier, K.H., Stenberg Wieser, G., Simon Wedlund, C., De Keyser, J, Dhooghe, F., Cessateur, G., Gibbons, A.: Ion acoustic waves at comet 67P/Churyumov-G,erasimenko – Observations and computations. Astron. Astrophys. 600, A3 (2017b). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  65. Gunell, H., Goetz, C., Simon Wedlund, C., Lindkvist, J., Hamrin, M., Nilsson, H., Llera, K., Eriksson, A., Holmström, M.: The infant bow shock: a new frontier at a weak activity comet. A&A 619, L2 (2018a). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  66. Gunell, H., Maggiolo, R., Nilsson, H., Stenberg, Wieser G, Slapak, R., Lindkvist, J., Hamrin, M., De Keyser, J.: Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018b). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  67. Gunell, H., Lindkvist, J., Goetz, C., Nilsson, H., Hamrin, M.: Polarisation of a small-scale cometary plasma environment: Particle-in-cell modelling of comet 67p/churyumov-Gerasimenko. Astron. Astrophys. 631, A174 (2019). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  68. Häberli, R.M., Gombosi, T.I., DeZeeuw, D.L., Combi, M.R., Powell, K.G.: Modeling of cometary x-rays caused by solar wind minor ions. Science 276, 939–942 (1997). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  69. Haerendel, G., Paschmann, G., Baumjohann, W., Carlson, C.W.: Dynamics of the AMPTE artificial comet. Nature 320, 720–723 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  70. Haider, S., Bhardwaj, A.: Radial distribution of production rates, loss rates and densities corresponding to ion masses \(\sim \)40 amu in the inner coma of comet halley: Composition and chemistry. Icarus 177(1), 196–216 (2005). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  71. Hajra, R., Henri, P., Myllys, M., Héritier, K.L., Galand, M., Simon, Wedlund C, Breuillard, H., Behar, E., Edberg, N.J.T., Goetz, C., Nilsson, H., Eriksson, A.I., Goldstein, R., Tsurutani, B.T., Moré, J., Vallières, X., Wattieaux, G.: Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September: a quantitative study by the Rosetta Plasma Consortium. MNRAS 480, 4544–4556 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  72. Hall, B.E.S., Lester, M., Sánchez-Cano, B., Nichols, J.D., Andrews, D.J., Edberg, N.J.T., Opgenoorth, H.J., Fränz, M., Holmström, M., Ramstad, R., Witasse, O., Cartacci, M., Cicchetti, A., Noschese, R., Orosei, R.: Annual variations in the martian bow shock location as observed by the Mars Express mission. JGeophysRes (Space Physics) 121(11). https://doi.org/10.1093/mnras/stx868 (2016)

  73. Hansen, K.C., Altwegg, K., Berthelier, J.J., Bieler, A., Biver, N., Bockelée-Morvan, D., Calmonte, U., Capaccioni, F., Combi, M.R., De Keyser, J., Fiethe, B., Fougere, N., Fuselier, S.A., Gasc, S., Gombosi, T.I., Huang, Z., Le Roy, L., Lee, S., Nilsson, H., Rubin, M., Shou, Y., Snodgrass, C., Tenishev, V., Toth, G., Tzou, C.Y., Simon Wedlund, C., Team, Rosina: Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. MNRAS 462, S491–S506 (2016). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  74. Hässig, M., Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J.J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M., De Keyser, J, Eberhardt, P., Fiethe, B., Fuselier, S.A., Galand, M., Gasc, S., Gombosi, T.I., Hansen, K.C., Jäckel, A., Keller, H.U., Kopp, E., Korth, A., Kührt, E., Le Roy, L, Mall, U., Marty, B., Mousis, O., Neefs, E., Owen, T., Rème, H., Rubin, M., Sémon, T., Tornow, C., Tzou, C.Y., Waite, J.H., Wurz, P.: Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347, aaa0276 (2015). https://doi.org/10.1126/science.aaa0276

    Google Scholar 

  75. Heinrich, J., Kim, S.H., Merlino, R.L.: Laboratory observations of self-excited dust acoustic shocks. Phys. Rev. Lett. 103(11), 115002 (2009). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  76. Henri, P., Vallières, X., Hajra, R., Goetz, C., Richter, I., Glassmeier, K.H., Galand, M., Rubin, M., Eriksson, A.I., Nemeth, Z., Vigren, E., Beth, A., Burch, J.L., Carr, C., Nilsson, H., Tsurutani, B., Wattieaux, G.: Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67p/CG. MNRAS 469, S372–S379 (2017). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  77. Heritier, K.L., Altwegg, K., Balsiger, H., Berthelier, J.J., Beth, A., Bieler, A., Biver, N., Calmonte, U., Combi, M.R., De Keyser, J., Eriksson, A.I., Fiethe, B., Fougere, N., Fuselier, S.A., Galand, M., Gasc, S., Gombosi, T.I., Hansen, K.C., Hassig, M., Kopp, E., Odelstad, E., Rubin, M., Tzou, C.Y., Vigren, E., Vuitton, V.: Ion composition at comet 67P, near perihelion: Rosetta observations and model-based interpretation. Mon. Notice R. Astron. Soc. 469(Suppl_2), S427–S442 (2017a). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  78. Heritier, K.L., Henri, P., Vallières, X., Galand, M., Odelstad, E., Eriksson, A.I., Johansson, F.L., Altwegg, K., Behar, E., Beth, A., Broiles, T.W., Burch, J.L., Carr, C.M., Cupido, E., Nilsson, H., Rubin, M., Vigren, E.: Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta. MNRAS 469, S118–S129 (2017b). https://doi.org/10.1093/mnras/stx1459

    Google Scholar 

  79. Heritier, K.L., Altwegg, K., Berthelier, J.J., Beth, A., Carr, C.M., D Keyser, J., Eriksson, A.I., Fuselier, S.A., Galand, M., Gombosi, T.I., Henri, P., Johansson, F.L., Nilsson, H., Rubin, M., simon, Wedlund C, Taylor, M.G.G.T., Vigren, E.: On the origin of molecular oxygen in cometary comae. Nat. Commun. 9(1), 2580 (2018a)

    ADS  Google Scholar 

  80. Heritier, K.L., Galand, M., Henri, P., Johansson, F.L., Beth, A., Eriksson, A.I., Vallières, X., Altwegg, K., Burch, J.L., Carr, C., Ducrot, E., Hajra, R., Rubin, M.: Plasma source and loss at comet 67P during the Rosetta mission. A&A 618, A77 (2018b). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  81. Hilchenbach, M., Fischer, H., Langevin, Y., Merouane, S., Paquette, J., Rynö, J., Stenzel, O., Briois, C., Kissel, J., Koch, A., Schulz, R., Silen, J., Altobelli, N., Baklouti, D., Bardyn, A., Cottin, H., Engrand, C., Fray, N., Haerendel, G., Henkel, H., Höfner, H., Hornung, K., Lehto, H., Mellado, E.M., Modica, P., Roy, L.L., Siljeström, S., Steiger, W., Thirkell, L., Thomas, R., Torkar, K., Varmuza, K., Zaprudin, B.: Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67p by cosima onboard rosetta. Philoso. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2097), 20160255 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  82. Huang, Z., Tóth, G, Gombosi, T.I., Jia, X., Combi, M.R., Hansen, K.C., Fougere, N., Shou, Y., Tenishev, V., Altwegg, K., Rubin, M.: Hall effect in the coma of 67P/Churyumov-Gerasimenko. MNRAS 475 (2), 2835–2841 (2018). https://doi.org/10.1093/mnras/stx3350, arXiv:1801.03991

    ADS  Google Scholar 

  83. Ip, W.H., Mendis, D.A.: The flute instability as the trigger mechanism for disruption of cometary plasma tails. Astrophys. J. 223, 671–673 (1978). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  84. Johansson, F.L., Odelstad, E., Paulsson, J.J.P., Harang, S.S., Eriksson, A.I., Mannel, T., Vigren, E., Edberg, N.J.T., Miloch, W.J., Simon Wedlund, C., Thiemann, E., Eparvier, F., Andersson, L.: Rosetta photoelectron emission and solar ultraviolet flux at comet 67p. Mon. Notices Royal Astron. Soc. 469(Suppl_2), S626–S635 (2017). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  85. Johlander, A., Vaivads, A., Khotyaintsev, Y.V., Gingell, I., Schwartz, S.J., Giles, B.L., Torbert, R.B., Russell, C.T.: Shock ripples observed by the MMS spacecraft: ion reflection and dispersive properties. Plasma Phys. Control. Fusion 60(12), 125006 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  86. Johnson, R.E.: Sputtering and desorption from icy surfaces. In: Schmitt, B., De Bergh, C., Festou, M. (eds.) Solar System Ices: Based on Reviews Presented at the International Symposium “Solar System Ices” Held in Toulouse, France, on March 27–30. https://doi.org/10.1093/mnras/stx868, vol. 1995, pp 303–334. Springer, Dordrecht (1998)

  87. Johnstone, A.D., Coates, A.J., Huddleston, D.E., Jockers, K., Wilken, B., Borg, H., Gurgiolo, C., Winningham, J.D., Amata, E.: Observations of the solar wind and cometary ions during the encounter between Giotto and comet grigg-Skjellerup. Astron. Astrophys. 273 (1993)

  88. Jones, G.H., Balogh, A., Horbury, T.S.: Identification of comet Hyakutake’s extremely long ion tail from magnetic field signatures. Nature 404 (6778), 574–576 (2000). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  89. Karlsson, T., Eriksson, A.I., Odelstad, E., André, M, Dickeli, G., Kullen, A., Lindqvist, P.A., Nilsson, H., Richter, I.: Rosetta measurements of lower hybrid frequency range electric field oscillations in the plasma environment of comet 67P. Geophys. Res. Lett. 44, 1641–1651 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  90. Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E.: The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  91. Kempf, Y., Pokhotelov, D., Gutynska, O., Wilson, L.B.I.I.I., Walsh, B.M., von Alfthan, S., Hannuksela, O., Sibeck, D.G., Palmroth, M.: Ion distributions in the Earth’s foreshock: Hybrid-Vlasov simulation and THEMIS observations. JGeophysRes (Space Physics) 120, 3684–3701 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  92. Kirkwood, S., Nilsson, H.: High-latitude sporadic-e and other thin layers – the role of magnetospheric electric fields. Space Sci. Rev. 91(3), 579–613 (2000). https://doi.org/10.1023/A:1005241931650

    ADS  Google Scholar 

  93. Koenders, C., Glassmeier, K.H., Richter, I., Motschmann, U., Rubin, M.: Revisiting cometary bow shock positions. Planet. Space Sci. 87, 85–95 (2013). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  94. Koenders, C., Perschke, C., Goetz, C., Richter, I., Motschmann, U., Glassmeier, K.H.: Low-frequency waves at comet 67P/Churyumov-Gerasimenko. Observations compared to numerical simulations. A&A 594, A66 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  95. Kurth, W.S., Averkamp, T.F., Gurnett, D.A., Wang, Z.: Cassini RPWS observations of dust in Saturn’s. E Ring. Planet. Space Sci. 54, 988–998 (2006). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  96. Lai, S.T.: A review of critical ionization velocity. Rev. Geophys. 39(4), 471–506 (2001). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  97. Lindkvist, J., Hamrin, M., Gunell, H., Nilsson, H., Simon Wedlund, C., Kallio, E., Mann, I., Pitkänen, T, Karlsson, T.: Energy conversion in cometary atmospheres hybrid modeling of 67P/Churyumov-G,erasimenko. Astron. Astrophys. 616, A81 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  98. Lisse, C.M., Dennerl, K., Englhauser, J., Harden, M., Marshall, F.E., Mumma, M.J., Petre, R., Pye, J.P., Ricketts, M.J., Schmitt, J., Trumper, J., West, R.G.: Discovery of x-ray and extreme ultraviolet emission from comet C/Hyakutake 1996 B2. Science 274, 205–209 (1996). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  99. Luehr, H., Kloecker, N., Acuña, M.H.: The diamagnetic effect during AMPTE’s tail releases - Initial results. Adv. Space Res. 8, 11–14 (1988). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  100. Lundin, R., Barabash, S., Andersson, H., Holmström, M, Grigoriev, A., Yamauchi, M., Sauvaud, J.A., Fedorov, A., Budnik, E., Thocaven, J.J., Winningham, D., Frahm, R., Scherrer, J., Sharber, J., Asamura, K., Hayakawa, H., Coates, A., Linder, D.R., Curtis, C., Hsieh, K.C., Sandel, B.R., Grande, M., Carter, M., Reading, D.H., Koskinen, H., Kallio, E., Riihela, P., Schmidt, W., Säles, T., Kozyra, J., Krupp, N., Woch, J., Luhmann, J., McKenna-Lawler, S., Cerulli-Irelli, R., Orsini, S., Maggi, M., Mura, A., Milillo, A., Roelof, E., Williams, D., Livi, S., Brandt, P., Wurz, P., Bochsler, P.: Solar wind-induced atmospheric erosion atMars: First results from ASPERA-3 on Mars express. Science 305, 1933–1936 (2004). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  101. Madanian, H., Cravens, T.E., Burch, J., Goldstein, R., Rubin, M., Nemeth, Z., Goetz, C., Koenders, C., Altwegg, K.: Plasma environment around comet 67P/Churyumov-Gerasimenko at perihelion: Model comparison with rosetta data. AJ 153, 30 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  102. Madsen, B., Simon, Wedlund C, Eriksson, A., Goetz, C., Karlsson, T., Gunell, H., Spicher, A., Henri, P., Vallieres̀, X., Miloch, W.J.: Extremely low-frequency waves inside the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko. Geophys. Res. Lett. 45, 3854–3864 (2018). https://doi.org/10.1029/2017GL076415

    ADS  Google Scholar 

  103. Mannel, T., Bentley, M., Boakes, P., Jeszenszky, H., Ehrenfreund, P., Engrand, C., Koeberl, C., Levasseur-Regourd, A., Romstedt, J., Schmied, R., Torkar, K., Weber, I.: Dust of comet 67p/churyumov-gerasimenko collected by rosetta/midas: classification and extension to the nanometer scale. A&A. https://doi.org/10.1051/0004-6361/201834851 (2019)

  104. Masunaga, K., Nilsson, H., Behar, E., Stenberg Wieser, G., Wieser, M., Goetz, C.: Flow pattern of accelerated cometary ions inside and outside the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko. A&A (2019)

  105. Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J.G., Acuña, M.H., Baumgärtel, K., Bertucci, C., Brain, D.A., Brecht, S.H., Delva, M., Dubinin, E., Øieroset, M., Slavin, J.: Bow shock and upstream phenomena at Mars. Space Sci. Rev. 111, 115–181 (2004). https://doi.org/10.1023/B:SPAC.0000032717.98679.d0

    ADS  Google Scholar 

  106. McComas, D.J., Allegrini, F., Bochsler, P., Bzowski, M., Collier, M., Fahr, H., Fichtner, H., Frisch, P., Funsten, H.O., Fuselier, S.A., Gloeckler, G., Gruntman, M., Izmodenov, V., Knappenberger, P., Lee, M., Livi, S., Mitchell, D., Möbius, E., Moore, T., Pope, S., Reisenfeld, D., Roelof, E., Scherrer, J., Schwadron, N., Tyler, R., Wieser, M., Witte, M., Wurz, P., Zank, G.: IBEX—interstellar boundary explorer. Space Sci. Rev. 146, 11–33 (2009). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  107. Meier, P., Glassmeier, K.H., Motschmann, U.: Modified ion-Weibel instability as a possible source of wave activity at Comet 67p/churyumov-Gerasimenko. Annales Geophysicae 34(9), 691–707 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  108. Mendis, D.A., Horányi, M.: Dusty plasma effects in comets: Expectations for rosetta. Rev. Geophys. https://doi.org/10.1093/mnras/stx868 (2013)

  109. Merlino, R.L.: Current-driven dust ion-acoustic instability in a collisional dusty plasma. IEEE Trans. Plasma Sci. 25, 60–65 (1997)

    ADS  Google Scholar 

  110. Morooka, M.W., Wahlund, J.E., Eriksson, A.I., Farrell, W.M., Gurnett, D.A., Kurth, W.S., Persoon, A.M., Shafiq, M., André, M., Holmberg, M.K.G.: Dusty plasma in the vicinity of Enceladus. J. Geophys. Res. 116(A12), A12221 (2011). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  111. Nemeth, Z., Burch, J., Goetz, C., Goldstein, R., Henri, P., Koenders, C., Madanian, H., Mandt, K., Mokashi, P., Richter, I., Timar, A., Szego, K.: Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko. MNRAS 462, S415–S421 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  112. Neubauer, F.M.: Giotto magnetic-field results on the boundaries of the pile-up region and the magnetic cavity. A&A 187, 73–79 (1987)

    MathSciNet  ADS  Google Scholar 

  113. Neubauer, F.M., Glassmeier, K.H., Pohl, M., Raeder, J., Acuña, M H, Burlaga, L.F., Ness, N.F., Musmann, G., Mariani, F., Wallis, M.K., Ungstrup, E., Schmidt, H.U.: First results from the Giotto magnetometer experiment at comet Halley. Nature 321, 352–355 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  114. Neubauer, F.M., Glassmeier, K.H., AJ Coates, A.J., Johnstone, A.D.: Low-frequency electromagnetic plasma waves at comet p/grigg-Skjellerup analysis and interpretation. J. Geophys. Res. 98(A12), 20937–20954 (1993). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  115. Neugebauer, M., Gloeckler, G., Gosling, J.T., Rees, A., Skoug, R., Goldstein, B.E., Armstrong, T.P., Combi, M.R., Mäkinen, T., McComas, D.J., von Steiger, R., Zurbuchen, T.H., Smith, E.J., Geiss, J., Lanzerotti, L.J.: Encounter of the Ulysses spacecraft with the ion tail of comet MCNaught. ApJ 667(2), 1262–1266 (2007). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  116. Niedner, M.B., Ionson, J.A., Brandt, J.C.: Interplanetary gas. XXVI - on the reconnection of magnetic fields in cometary ionospheres at interplanetary sector boundary crossings. ApJ 245, 1159–1169 (1981). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  117. Nilsson, H., Stenberg, Wieser G, Behar, E., Simon, Wedlund C, Gunell, H., Yamauchi, M., Lundin, R., Barabash, S., Wieser, M., Carr, C., Cupido, E., Burch, J.L., Fedorov, A., Sauvaud, J.A., Koskinen, H., Kallio, E., Lebreton, J.P., Eriksson, A., Edberg, N., Goldstein, R., Henri, P., Koenders, C., Mokashi, P., Nemeth, Z., Richter, I., Szego, K., Volwerk, M., Vallat, C., Rubin, M.: Birth of a comet magnetosphere: A spring of water ions. Science 347(1), aaa0571 (2015). https://doi.org/10.1126/science.aaa0571

    Google Scholar 

  118. Nilsson, H., Stenberg Wieser, G., Behar, E., Gunell, H., Galand, M., Simon Wedlund, C., Alho, M., Goetz, C., Yamauchi, M., Henri, P., Eriksson, E.O.A.: Evolution of the ion environment of comet 67P, during the rosetta mission as seen by RPC-ICA. Mon. Notices R. Astron. Soc. 469(Suppl_2), S252–S261 (2017). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  119. Nilsson, H., Gunell, H., Karlsson, T., Brenning, N., Henri, P., Goetz, C., Eriksson, A.I., Behar, E., Stenberg Wieser, G., Vallières, X.: Size of a plasma cloud matters: The polarisation electric field of a small-scale comet ionosphere. Astron. Astrophys. 616, A50 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  120. Noonan, J.W., Stern, S.A., Feldman, P.D., Broiles, T., Simon Wedlund, C., Edberg, N.J.T., Schindhelm, E., Parker, J.W., Keeney, B.A., Vervack, R.J. Jr., Steffl, A.J., Knight, M.M., Weaver, H.A., Feaga, L.M., A’Hearn, M., Bertaux, J.L.: Ultraviolet observations of coronal mass ejection impact on comet 67P /Churyumov-Gerasimenko by Rosetta Alice. AJ 156, 16 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  121. Odelstad, E., Eriksson, A.I., Johansson, F.L., Vigren, E., Henri, P., Gilet, N., Heritier, K.L., Vallières, X., Rubin, M., André, M.: Ion velocity and electron temperature inside and around the diamagnetic cavity of comet 67P. J. Geophys. Res. Space Phys. 123(7), 5870–5893 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  122. Oya, H., Morioka, A., Miyake, W., Smith, E.J., Tsurutani, B.T.: Discovery of cometary kilometric radiations and plasma waves at comet Halley. Nature 321, 307–310 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  123. Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., Lee, S.H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., Sibeck, D.: Jets downstream of collisionless shocks. Space Sci. Rev. 214(5), 81 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  124. Rahe, J.: The structure of tail rays in the coma region of comets. Zeitschr Astrophys. 68, 208–213 (1968)

    ADS  Google Scholar 

  125. Rahe, J., Donn, B.: Ionization and ray formation in comets. Astron. J. 74, 256–258 (1969)

    ADS  Google Scholar 

  126. Richter, I., Koenders, C., Auster, H.U., Frühauff, D, Götz, C., Heinisch, P., Perschke, C., Motschmann, U., Stoll, B., Altwegg, K., Burch, J., Carr, C., Cupido, E., Eriksson, A., Henri, P., Goldstein, R., Lebreton, J.P., Mokashi, P., Nemeth, Z., Nilsson, H., Rubin, M., Szegö, K., Tsurutani, B.T., Vallat, C., Volwerk, M., Glassmeier, K.H.: Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko. Annales Geophysicae 33, 1031–1036 (2015). https://doi.org/10.5194/angeo-33-1031-2015, arXiv:1505.06068

    ADS  Google Scholar 

  127. Richter, I., Auster, H.U., Berghofer, G., Carr, C., Cupido, E., Fornaçon, K.H., Goetz, C., Heinisch, P., Koenders, C., Stoll, B., Tsurutani, B.T., Vallat, C., Volwerk, M., Glassmeier, K.H.: Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP. Annales Geophysicae 34, 609–622 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  128. Riedler, W., Schwingenschuh, K., Yeroshenko, Y.E., Styashkin, V.A., Russell, C.T.: Magnetic field observations in comet Halley’s coma. Nature 321, 288–289 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  129. Rubin, M., Hansen, K.C., Combi, M.R., Daldorff, L.K.S., Gombosi, T.I., Tenishev, V.M.: Kelvin-helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumov-Gerasimenko. J. Geophys. Res. (Space Phys) 117, A06227 (2012). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  130. Sauer, K., Baumgaertel, K.: Magnetic cavity formation at comet Halley and at the AMPTE Li release. In: Rolfe, E J, Battrick, B, Ackerman, M, Scherer, M, Reinhard, R (eds.) Diversity and Similarity of Comets, vol. 278, pp 113–118 (1987)

  131. Scarf, F.: Plasma wave observations at Comets giacobini-Zinner and Halley. Washington DC Am. Geophys. Union Geophys. Monograph. Ser. 53, 31–40 (1989)

    ADS  Google Scholar 

  132. Scarf, F.L., Ferdinand, V., Coroniti, V., Kennel, C.F., Gurnett, D.A., Ip, W.H., Smith, E.J.: Plasma wave observations at comet giacobini-Zinner. Science 232, 377–381 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  133. Schaible, M.J., Dukes, C.A., Hutcherson, A.C., Lee, P., Collier, M.R., Johnson, R.E.: Solar wind sputtering rates of small bodies and ion mass spectrometry detection of secondary ions. J. Geophys. Res. (Planets) 122, 1968–1983 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  134. Schillings, A., Nilsson, H., Slapak, R., Wintoft, P., Yamauchi, M., Wik, M., Dandouras, I., Carr, C.M.: O+ escape during the extreme space weather event of 4-10 September 2017. Space Weather 16(9), 1363–1376 (2018). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  135. Shan, L., Lu, Q., Mazelle, C., Huang, C., Zhang, T., Wu, M., Gao, X., Wang, S.: The shape of the Venusian bow shock at solar minimum and maximum: Revisit based on VEX observations. PlanetSpaceSci 109, 32–37 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  136. Simon Wedlund C, Kallio, E., Alho, M., Nilsson, H., Stenberg Wieser, G., Gunell, H., Behar, E., Pusa, J., Gronoff, G.: The atmosphere of comet 67P/Churyumov-Gerasimenko diagnosed by charge- exchanged solar wind alpha particles. A&A 587, A154 (2016). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  137. Simon Wedlund C, Alho, M., Gronoff, G., Kallio, E., Gunell, H., Nilsson, H., Lindkvist, J., Behar, E., Stenberg Wieser, G., Miloch, W.J.: Hybrid modelling of cometary plasma environments. I. Impact of photoionisation, charge exchange, and electron ionisation on bow shock and cometopause at 67P/Churyumov-Gerasimenko. A&A 604, A73 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  138. Simon Wedlund C, Behar, E., Kallio, E., Nilsson, H., Alho, M., Gunell, H., Bodewits, D., Beth, A., Gronoff, G., Hoekstra, R.: Solar wind charge exchange in cometary atmospheres. II. Analytical model. Astron. Astrophys. https://doi.org/10.1093/mnras/stx868 (2019)

  139. Simon Wedlund C, Behar, E., Nilsson, H., Alho, M., Kallio, E., Gunell, H., Bodewits, D., Heritier, K., Galand, M., Beth, A., Rubin, M., Altwegg, K., Volwerk, M., Gronoff, G., Hoekstra, R.: Solar wind charge exchange in cometary atmospheres. III. Results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 630, A37 (2019). https://doi.org/10.1051/0004-6361/201834881, arXiv:1902.04417

    Google Scholar 

  140. Simon Wedlund C, Bodewits, D., Alho, M., Hoekstra, R., Behar, E., Gronoff, G., Gunell, H., Nilsson, H., Kallio, E., Beth, A.: Solar wind charge exchange in cometary atmospheres. I. Charge-changing and ionization cross sections for he and h particles in H2O. Astron. Astrophys. (2019)

  141. Slavin, J.A., Smith, E.J., Tsurutani, B.T., Sicsoe, G.L., Jones, D.E., Mendis, D.A.: Giacobini-zinner magnetotail - ICE magnetic field observations. Geophys. Res. Lett. 13, 283–286 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  142. Smith, E.J., Tsurutani, B.T., Slavin, J.A., Jones, D.E., Siscoe, G.L., Mendis, D.A.: International cometary explorer encounter with giacobini-Zinner: Magnetic field observations. Science 232(4748), 382–385 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  143. Szegö, K., Glassmeier, K.H., Bingham, R., Bogdanov, A., Fischer, C., Haerendel, G., Brinca, A., Cravens, T., Dubinin, E., Sauer, K., Fisk, L., Gombosi, T., Schwadron, N., Isenberg, P., Lee, M., Mazelle, C., Möbius, E., Motschmann, U., Shapiro, V.D., Tsurutani, B., Zank, G.: Physics of mass loaded plasmas. Space Sci Rev 94, 429–671 (2000)

    ADS  Google Scholar 

  144. Tsurutani, B.T.: Comets: a laboratory for plasma waves and instabilities. Washington DC Am. Geophys. Union Geophys. Monograph. Ser. 61, 189–209 (1991)

    ADS  Google Scholar 

  145. Tsurutani, B.T., Lakhina, G.S., Smith, E.J., Buti, B., Moses, S.L., Coroniti, F.V., Brinca, A.L., Slavin, J.A., Zwickl, R.D.: Mirror mode structures and elf plasma waves in the giacobini-Zinner magnetosheath. Nonlinear Process. Geophys. 6, 229–234 (1999). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  146. Valenzuela, A., Haerendel, G., Föppl, H., Melzner, F., Neuss, H., Rieger, E., Stöcker, J., Bauer, O., Höfner, H., Loidl, J.: The AMPTE artificial comet experiments. Nature 320, 700–703 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  147. Verscharen, D., Wicks, R.T., Branduardi-Raymont, G., Erdélyi, R., Frontera, F., Götz, C., Guidorzi, C., Lebouteiller, V., Matthews, S.A., Nicastro, F., Rae, I.J., Retinò, A., Simionescu, A., Soffitta, P., Uttley, P., Wimmer-Schweingruber, R.F.: The plasma universe: a coherent science theme for voyage 2050. Front. Astron. Space Sci. 8, 30 (2021). https://doi.org/10.3389/fspas.2021.651070, arXiv:2104.07983

    ADS  Google Scholar 

  148. Vigren, E., Eriksson, A.I.: A 1D model of radial ion motion interrupted by Ion-Neutral interactions in a cometary coma. AJ 153, 150 (2017). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  149. Vigren, E., Galand, M.: Predictions of ion production rates and ion number densities within the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko at perihelion. ApJ 772, 33 (2013). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  150. Vigren, E., Galand, M., Lavvas, P., Eriksson, A.I., Wahlund, J.E.: On the possibility of significant electron depletion due to nanograin charging in the coma of comet 67P/Churyumov-Gerasimenko near perihelion. Ap J 798, 130 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  151. Vigren, E., André, M., Edberg, N.J.T., Engelhardt, I.A.D., Eriksson, A.I., Galand, M., Goetz, C., Henri, P., Heritier, K., Johansson, F.L., Nilsson, H., Odelstad, E., Rubin, M., Stenberg-Wieser, G., Tzou, C.Y., Valliéres, X.: Effective ion speeds at 200-250 km from comet 67P/Churyumov-Gerasimenko near perihelion. MNRAS 469, S142–S148 (2017). https://doi.org/10.1093/mnras/stx868

    Google Scholar 

  152. Vourlidas, A., Davis, C.J., Eyles, C.J., Crothers, S.R., Harrison, R.A., Howard, R.A., Moses, J.D., Socker, D.G.: First direct observation of the interaction between a comet and a coronal mass ejection leading to a complete plasma tail disconnection. ApJ 668, L79–L82 (2007). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  153. Wargelin, B., Beiersdorfer, P., Brown, G.: Ebit charge-exchange measurements and astrophysical applications. Can. J. Phys. 86(1), 151–169 (2008). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  154. Wegmann, R.: MHD Model calculations for the effect of interplanetary shocks on the plasma tail of a comet. A&A 294, 601–614 (1995)

    ADS  Google Scholar 

  155. Wurz, P., Rubin, M., Altwegg, K., Balsiger, H., Berthelier, J.J., Bieler, A., Calmonte, U., De Keyser, J., Fiethe, B., Fuselier, S., Galli, A., Gasc, S., Gombosi, T.I., Jäckel, A., Le Roy, L, Mall, U.A., Rème, H., Tenishev, V., Tzou, C.Y.: Solar wind sputtering of dust on the surface of 67p/churyumov-gerasimenko. A&A 583, A22 (2015). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  156. Yao, Y., Giapis, K.P.: Dynamic molecular oxygen production in cometary comae. Nat. Commun. 8, 15298 EP – (2017)

  157. Yumoto, K., Saito, T., Nakagawa, T.: Hydromagnetic waves near O+ (or H2O+) ion cyclotron frequency observed by Sakigake at the closest approach to comet Halley. Geophys. Res. Lett. 13 (8), 825–828 (1986). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

  158. Zhang, T.L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C.T., Wei, H.Y., Wang, C., Balikhin, M., Barabash, S., Auster, H.U., Kudela, K.: Induced magnetosphere and its outer boundary at Venus. JGeophysRes (Planets) 113, E00B20 (2008). https://doi.org/10.1029/2008JE003215

    Google Scholar 

  159. Ziegler, J.F.: SRIM-2003. Nucl. Instrum. Methods Phys. Res. B 219, 1027–1036 (2004). https://doi.org/10.1093/mnras/stx868

    ADS  Google Scholar 

Download references

Acknowledgements

C. G. is supported by an ESA Research Fellowship. H. G. acknowledges support by the Swedish National Space Agency grant 108/18. B. S.-C. acknowledges support through UK-STFC grant ST/S000429/1. French co-authors acknowledge the support of CNES for the Rosetta and Comet Interceptor missions. I. M. acknowledges support through grants of Research Council of Norway (262941 and 275503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Goetz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Addendum

Appendix A: Addendum

In the light of the White Papers that were submitted to ESA’s Voyage 2050 call, and the presentations and discussions at the workshop held in October 2019 in Madrid, we, as authors of the White Paper on Cometary Plasma Science, would like to add a few points to our discourse. In the White Paper we argue that comets provide a laboratory for studies of the role of small scale plasma processes in large scale systems, which is of general interest in physics and has implications for a wide range of situations in the Universe. We would like to highlight that the topic of the White Paper is strongly linked to a number of other Voyage 2050 submissions. Therefore, the lead author is a co-signatory of the joint statement “The Plasma Universe: A Coherent Science Theme for Voyage 2050”, by [147]. There are some additional aspects not stressed in the Cometary Plasma Science White Paper, where cometary plasma physics can have a major impact on Astronomy and Astrophysics.

An important topic in exoplanet research today is habitability, and the presence of an appropriate planetary atmosphere plays a key role for conditions for life since it is critical for a favourable climate and for maintaining liquid water on the surface. For life to evolve on a planet it is necessary that it remains habitable, and keeps a stable atmosphere, over long periods of time. From research on our own Solar System we know that interactions between the solar wind and the planetary environments have crucial impacts on atmospheric escape by which a planet’s atmosphere is gradually eroded [7, 17, 134]. The characteristics of plasma boundaries (e.g. ionopause, magnetopause, and bow shock) strongly affect the interaction of the planetary environment with the stellar wind [158]. Important escape processes, like sputtering and ion pickup that together dominate the escape from Venus, are highly dependent on the position of these boundaries [66]. Comets hold the key to the understanding of boundary formation on a fundamental level, and they also enable us to explore parameter regimes that are unavailable at planets in our Solar System by going through a wide range of parameters on their journey through the Solar System [65, 138]. Both these aspects can be used to make extrapolations to situations at planets orbiting other stars.

Considering the evolution of a planet (in our own Solar System or elsewhere) and its ability to hold on to its water, it is of particular interest to study the interaction of stellar winds with water-rich exospheres. Comets provide exactly that kind of environment, where water is the dominating particle species in the coma most of the time (see for example [74] for a Rosetta observation). As outlined in the White Paper, there is an intricate combination of collisional and non-collisional interaction processes in the regions where the solar wind passes through the water-dominated atmosphere.

We would also like to stress that to answer the outstanding questions in comet plasma physics requires simultaneous measurements by several spacecraft that accompany a comet for an extended period of time. It is a general problem in experimental space physics that one cannot distinguish between spatial and temporal effects from single-point observations. So far, all in-situ observations ever made at comets have been performed at one single point in space. The Comet Interceptor mission, which is now under development by ESA with a subspacecraft provided by JAXA, will be pioneering in that it is the first mission to provide multi-point measurements at a comet. However, as a Fast-class mission with a small budget, it is also limited, and it cannot replace a multi-point comet companion mission. This is due in part to its extremely sparse plasma instrumentation, not all subspacecraft carry a full set of plasma instruments, and in part to the mission being a fast flyby, which cannot provide more than a snapshot of the comet plasma in one single spacecraft formation and for one single heliocentric distance and outgassing rate. The mission concepts we outline in the White Paper will therefore constitute a major advance in plasma science, and thus impact the understanding of a wide range of plasma physical contexts in space and astrophysics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetz, C., Gunell, H., Volwerk, M. et al. Cometary plasma science. Exp Astron 54, 1129–1167 (2022). https://doi.org/10.1007/s10686-021-09783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09783-z

Keywords

Navigation