Skip to main content
Log in

Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The “Ice Giants” Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA’s Cosmic Vision 2015–2025. UP was proposed to the European Space Agency’s M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz–Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036–2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ballester, G.E.: Magneotspheric interactions in the major planets. In: Wamsteker, W., Gonzalez Riestra, R. (eds.) Ultraviolet Astrophysics Beyond the IUE Final Archive, Proceedings of the Conference held in Sevilla, Spain, from 11–14 November 1997, ESA SP, vol. 413, p. 21. ESA Publications Division (1998)

  2. Behannon, K.W., Lepping, R.P., Sittler Jr., E.C., Ness, N.F., Mauk, B.H.: The magnetotail of Uranus. J. Geophys. Res. 92(A13), 15354–15366 (1987). doi:10.1029/JA092iA13p15354

    Article  ADS  Google Scholar 

  3. Belton, M.J.S., et al.: New Frontiers in the Solar System: An Integrated Exploration Strategy. Solar System Exploration Survey Space Studies Board, National Research Council. The National Academies Press, Washington, D.C.. (2003) ISBN: 0-309-50836-3

    Google Scholar 

  4. Bergstralh, J.T., Miner, E.D., Matthews, M.S. (eds.): Uranus. University of Arizona Space Science Series. University of Arizona Press. (1991) ISBN: 978-0816512089

  5. Boué, G., Laskar, J.: A collisionless scenario for Uranus tilting. Astrophys. J. 712, L44 (2010). doi:10.1088/2041-8205/712/1/L44

    Article  ADS  Google Scholar 

  6. Capone, L.A., Whitten, R.C., Prasad, S.S., Dubach, J.: The ionospheres of Saturn, Uranus, and Neptune. Astrophys. J. 215, 977–983 (1977). doi:10.1086/155434

    Article  ADS  Google Scholar 

  7. Chandler, M.O., Waite, J.H.: The ionosphere of Uranus—a myriad of possibilities. Geophys. Res. Lett. 13, 6–9 (1986). doi:10.1029/GL013i001p00006

    Article  ADS  Google Scholar 

  8. Christensen, U.R., Tilgner, A.: Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429(6988), 169–171 (2004). doi:10.1038/nature02508

    Article  ADS  Google Scholar 

  9. Crida, A.: Minimum mass solar nebulae and planetary migration. Astrophys. J. 698, 606–614 (2009). doi:10.1088/0004-637X/698/1/606

    Article  ADS  Google Scholar 

  10. Croft, S.K., Soderblom, L.A.: Geology of the Uranian satellites. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 561–628. University of Arizona Press, Tucson (1991)

    Google Scholar 

  11. de Pater, I., Hammel, H.B., Gibbard, S.G., Showalter, M.R.: New dust belts of Uranus: one ring, two ring, red ring, blue ring. Science 312(5770), 92–94 (2006). doi:10.1126/science.1125110

    Article  ADS  Google Scholar 

  12. de Pater, I., Hammel, H.B., Showalter, M.R., van Dam, M.A.: The dark side of the rings of Uranus. Science 317(5846), 1888 (2007). doi:10.1126/science.1148103

    Article  ADS  Google Scholar 

  13. Delsanti, A., Jewitt, D.: The solar system beyond the planets. In: Blondel, Ph., Mason, J. (eds.) Solar System Update, pp. 267–294. Springer, Germany (2006)

    Chapter  Google Scholar 

  14. Desch, M.D., Connerney, J.E.P., Kaiser, M.L.: The rotation period of Uranus. Nature 322, 42–43 (1986)

    Article  ADS  Google Scholar 

  15. Desch, M.D., Kaiser, M.L., Zarka, P., Lecacheux, A., Leblanc, Y., Aubier, M., Ortega-Molina, A.: Uranus as a radio source. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus. University of Arizona Press, Tucson (1991)

    Google Scholar 

  16. Duncan, M.J., Lissauer, J.J.: Orbital stability of the uranian satellite system. Icarus 125(1), 1–12 (1997). doi:10.1006/icar.1996.5568

    Article  ADS  Google Scholar 

  17. Elliot, J.L., Nicholson, P.D.: The rings of Uranus. In: Brahic, A., Greenberg, R. (eds.) Planetary Rings. University of Arizona Press, Tucson (1984)

    Google Scholar 

  18. Ferri, P., Denis, M.: Utilising Rosetta commonality to reduce mission operations cost for Mars Express. Acta Astronaut. 52(2–6), 353–359 (2003). doi:10.1016/S0094-5765(02)00175-3

    Article  ADS  Google Scholar 

  19. Fortney, J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152(1–4), 423–447 (2010). doi:10.1007/s11214-009-9582-x

    Article  ADS  Google Scholar 

  20. Fortney, J.J., Ikoma, M., Nettelmann, N., Guillot, T., Marley, M.S.: Self-consistent model atmospheres and the cooling of the solar system’s giant planets. Astrophys. J. 729, 32 (2011). doi:10.1088/0004-637X/729/1/32

    Article  ADS  Google Scholar 

  21. Fountain, G.H., Kusnierkiewicz, D.Y., Hersman, C.B., Herder, T.S., Coughlin, T.B., Gibson, W.C., Clancy, D.A., DeBoy, C.C., Hill, T.A., Kinnison, J.D., Mehoke, D.S., Ottman, G.K., Rogers, G.D., Stern, S.A., Stratton, J.M., Vernon, S.R., Williams, S.P.: The New Horizons spacecraft. Space Sci. Rev. 140, 23–47 (2008). doi:10.1007/s11214-008-9374-8

    Article  ADS  Google Scholar 

  22. French, et al.: Dynamics and structure of the uranian rings. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 327–409. University of Arizona Press, Tucson (1991)

    Google Scholar 

  23. Geissler, P.E., Greenberg, R., Hoppa, G., et al.: Evidence for non-synchronous rotation of Europa. Nature 391, 368 (1998)

    Article  ADS  Google Scholar 

  24. Gimenez, A., Lebreton, J.-P., Svedhem, H., Tauber, J.: Studies on the re-use of the Mars Express platform. ESA Bull. 109, 78–86 (2002)

    ADS  Google Scholar 

  25. Gladman, B., Quinn, D.D., Nicholson, P., Rand, R.: Synchronous locking of tidally evolving satellites. Icarus 122(1), 166–192 (1996). doi:10.1006/icar.1996.0117

    Article  ADS  Google Scholar 

  26. Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kürt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007). doi:10.1007/s11214-006-9140-8

    Article  ADS  Google Scholar 

  27. Guillot, T.: The interiors of giant planets: models and outstanding question. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005)

    Article  ADS  Google Scholar 

  28. Hammel, H.B., Sromovsky, L.A., Fry, P.M., Rages, K., Showalter, M., de Pater, I., van Dam, M.A., Lebeau, R.P., Deng, X.: The dark spot in the atmosphere of Uranus in 2006: discovery, description, and dynamical simulations. Icarus 201(1), 257–271 (2008)

    Article  ADS  Google Scholar 

  29. Hansen, C.J., Aljabri, A.S., Banfield, D., Bierhaus, E.B., Brown, M., Colwell, J.E., Dougherty, M., Hendrix, A.R., Ingersoll, A., Khurana, K., Landau, D., McEwen, A., Paige, D.A., Paranicas, C., Satter, C.M., Schmidt, B., Showalter, M., Spilker, L.J., Spilker, T., Stansberry, J., Strange, N., Tiscareno, M.: Neptune science with Argo—a voyage through the outer solar system. White paper submitted to the 2013–2022 Planetary Decadal Survey. http://www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=37&parm_type=PSDS (2011). Accessed 20 July 2011

  30. Helled, R., Anderson, J.D., Schubert, G.: Uranus and Neptune: shape and rotation. Icarus 210(1), 446–454 (2010). doi:10.1016/j.icarus.2010.06.037

    Article  ADS  Google Scholar 

  31. Herbert, F.: Aurora and magnetic field of Uranus. J. Geophys. Res. 114, A11206 (2009). doi:10.1029/2009JA014394

    Article  Google Scholar 

  32. Herbert, F., Sandel, B.R.: The uranian aurora and its relationship to the magnetosphere. J. Geophys. Res. 99(A3), 4143–4160 (1994)

    Article  ADS  Google Scholar 

  33. Holme, R., Bloxham, J.: The magnetic fields of Uranus and Neptune: methods and models. J. Geophys. Res. 101(E1), 2177–2200 (1996). doi:10.1029/95JE03437

    Article  ADS  Google Scholar 

  34. Hubbard, W.R., et al.: Ice giants decadal study. http://sites.nationalacademies.org/SSB/SSB_059331(2010). Retrieved 7 October 2010

  35. Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185(1), 258–273 (2006). doi:10.1016/j.icarus.2006.06.005

    Article  ADS  Google Scholar 

  36. Jacobson, R.A., Campbell, J.K., Taylor, A.H., Synnott, S.P.: The masses of Uranus and its major satellites from Voyager tracking data and Earth-based uranian satellite data. Astron. J. 103(6), 2068–2078 (1992)

    Article  ADS  Google Scholar 

  37. Lorenz, R.D., Stiles, B.W., Kirk, R.L. et al.: Titan’s rotation reveals an internal ocean and changing zonal winds. Science 1649–1651 (2008)

  38. Majeed, T., Waite, J.H., Bougher, S.W., Yelle, R.V., Gladstone, G.R., McConnell, J.C., Bhardwaj, A.: The ionospheres–thermospheres of the giant planets. Adv. Space Res. 33(2), 197–211 (2004). doi:10.1016/j.asr.2003.05.009

    Article  ADS  Google Scholar 

  39. Melin, H., Stallard, T., Miller, S., Trafton, L.M., Encrenaz, Th, Geballe, T.R.: Seasonal variability in the ionosphere of Uranus. Astrophys. J. 729, 134 (2011). doi:10.1088/0004-637X/729/2/134

    Article  ADS  Google Scholar 

  40. Murray, C.D., Thompson, R.P.: Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature 348, 499–502 (1990). doi:10.1038/348499a0

    Article  ADS  Google Scholar 

  41. Ness, N.F., Connerney, J.E.P., Lepping, R.P., Schulz, M., Voigt, G.-H.: The magnetic field and magnetospheric configuration of Uranus. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 739–779. University of Arizona Press, Tucson (1991)

    Google Scholar 

  42. Peale, S.J., Phillips, R.J., Solomon, S.C., Smith, D.E., Zuber, M.T.: A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci. 37, 1269–1283 (2002)

    Article  ADS  Google Scholar 

  43. Pearl, J.C., Conrath, B.J., Hanel, R.A., Pirraglia, J.A.: The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data. Icarus 84, 12–28 (1990). doi:10.1016/0019-1035(90)90155-3

    Article  ADS  Google Scholar 

  44. Plescia, J.B.: Cratering history of the Uranian satellites—Umbriel, Titania, and Oberon. J. Geophys. Res. 92, 14918–14932 (1987). doi:10.1029/JA092iA13p14918

    Article  ADS  Google Scholar 

  45. Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609(2), 1170–1180 (2004). doi:10.1086/421257

    Article  ADS  Google Scholar 

  46. Saur, J., Neubauer, F.M., Glassmeier, K.-H.: Induced magnetic fields in solar system bodies. Space Sci. Rev. 152, 391–421 (2010). doi:10.1007/s11214-009-9581-y

    Article  ADS  Google Scholar 

  47. Sayanagi, K.M., Showman, A.P., Dowling, T.E.: The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65(12), 3947 (2008). doi:10.1175/2008JAS2558.1

    Article  ADS  Google Scholar 

  48. Seidelmann, P.K., Archinal, B.A., A’hearn, M.F., Conrad, A., Consolmagno, G.J., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Obsert, J., Stooke, P., Tedesco, E.F., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astr. 98, 155–180 (2007). doi:10.1007/s10569-007-9072-y

    Article  ADS  MATH  Google Scholar 

  49. Selesnick, R.S., Richardson, J.D.: Plasmasphere formation in arbitrarily oriented magnetospheres. Geophys. Res. Lett. 13, 624–627 (1986). doi:10.1029/GL013i007p00624

    Article  ADS  Google Scholar 

  50. Showalter, M., Lissauer, J.: The second ring–moon system of Uranus: discovery and dynamics. Science 311(5763), 973–977 (2006). doi:10.1126/science.1122882

    Article  ADS  Google Scholar 

  51. Showalter, M.R., Lissauer, J.J., French, R.G., Hamilton, D.P., Nicholson, P.D., de Pater, I., Dason, R.: HST observations of the uranian outer ring-moon system. Bull.-Am. Astron. Soc. 40, 431 (2008)

    ADS  Google Scholar 

  52. Showman, A.P.: Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 3132–3157 (2007)

    Article  ADS  Google Scholar 

  53. Sittler Jr., E.C., Ogilvie, K.W., Selesnick, R.: Survey of electrons in the Uranian magnetosphere: Voyager 2 observations. J. Geophys. Res. 92, 15263 (1987)

    Article  ADS  Google Scholar 

  54. Squyres, S., et al.: Vision and Voyages for Planetary Science in the Decade 2013–2022. Committee on the Planetary Science Decadal Survey; National Research Council. Published by The National Academies Press, Washington, D.C.. ISBN: 0-309-20955-2. Pre-publication version (2011)

  55. Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428(6979), 151–153 (2004). doi:10.1038/nature02376

    Article  ADS  Google Scholar 

  56. Stanley, S., Bloxham, J.: Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184(2), 556–572 (2006). doi:10.1016/j.icarus.2006.05.005

    Article  ADS  Google Scholar 

  57. Stone, E.C., Cooper, J.F., Cummings, A.C., McDonald, F.B., Trainor, J.H., Lal, N., McGuide, R.E., Chenette, D.L.: Energetic particles in the uranian magnetosphere. Science 233, 93–97 (1986)

    Article  ADS  Google Scholar 

  58. Stone, E.C., Miner, E.D.: The Voyager 2 encounter with the uranian system. Science 233, 39–43 (1986). doi:10.1126/science.233.4759.39

    Article  ADS  Google Scholar 

  59. Stone, E.C.: The Voyager 2 encounter with Uranus. J. Geophys. Res. 92(A13), 14873–14876 (1987). doi:10.1029/JA092iA13p14873

    Article  ADS  Google Scholar 

  60. Tittemore, W.C., Wisdom, J.: Tidal evolution of the Uranian satellites—II. An explanation of the anomalously high orbital inclination of Miranda. Icarus 78, 63–89 (1989)

    Article  ADS  Google Scholar 

  61. Tittemore, W.C., Wisdom, J.: Tidal evolution of the Uranian satellites. III—evolution through the Miranda–Umbriel 3:1, Miranda–Ariel 5:3, and Ariel–Umbriel 2:1 mean-motion commensurabilities. Icarus 85, 394–443 (1990). doi:10.1016/0019-1035(90)90125-S

    Article  ADS  Google Scholar 

  62. Tittemore, W.C.: Tidal heating of Ariel. Icarus 87, 110–139 (1990). doi:10.1016/0019-1035(90)90024-4

    Article  ADS  Google Scholar 

  63. Tóth, G., Kovács, D., Hansen, K.C., Gombosi, T.I.: Three-dimensional MHD simulations of the magnetosphere of Uranus. J. Geophys. Res. 109, A11210 (2004). doi:10.1029/2004JA010406

    Article  Google Scholar 

  64. Trafton, L.M., Miller, S., Geballe, T.R., Tennyson, J., Ballester, G.E.: H2 Quadrupole and H\(_{3}^{+}\) emission from Uranus: the Uranian thermosphere, ionosphere, and aurora. Astrophys. J. 524(2), 1059–1083 (1999). doi:10.1086/307838

    Article  ADS  Google Scholar 

  65. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005). doi:10.1038/nature03539

    Article  ADS  Google Scholar 

  66. Vasavada, A.R., Showman, A.P.: Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005). doi:10.1088/0034-4885/68/8/R06

    Article  MathSciNet  ADS  Google Scholar 

  67. Vasyliūnas, V.M.: The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett. 13, 621–623 (1986). doi:10.1029/GL013i007p00621

    Article  ADS  Google Scholar 

  68. Zarka, P., Lecacheux, A.: Beaming of Uranian nightside kilometric radio emission and inferred source location. J. Geophys. Res. 92, 15177–15187 (1987). doi:10.1029/JA092iA13p15177

    Article  ADS  Google Scholar 

  69. Zarka, P.: Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998)

    Article  ADS  Google Scholar 

  70. Zarka, P.: Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55(5), 598–617 (2007). doi:10.1016/j.pss.2006.05.045

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CSA was supported by a Science and Technology Facilities Council Postdoctoral Fellowship. LNF was supported by a Glasstone Fellowship at the University of Oxford. We wish to thank EADS Astrium and Systems Engineering and Assessment Ltd. for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Arridge.

Appendix A

Appendix A

The 165 individuals (109 in Europe, in 67 institutes in 13 countries) listed below support the UP mission.

1.1 Argentina

        Instituto de Astronomía y Física del Espacio

        Cèsar Bertucci

1.2 Belgium

        Royal Observatory of Belgium

        Ozgur Karatekin

        Université de Liège

        Aikaterini Radioti, Bertrand Bonfond, Denis Grodent, Jacques Gustin, Jean-Claude Gérard

        University of Namur

        Benoît Noyelles

1.3 Czech Republic

        Institute of Atmospheric Physics, Prague

        Benjamin Grison, Jan Soucek, Ondrej Santolik, Vratislav Krupar

1.4 France

        Centre d’Etude Spatiale des Rayonnements

        Nicolas André

        CNRS-UJF, Laboratoire de Planétologie de Grenoble, Bâtiment D de physique, Grenoble

        Mathieu Barthélémy

        IAS, Université Paris Sud

        Yves Langevin

        IMCCE

        Valery Lainey, Jacques Laskar, Nicolas Rambaux

        Laboratoire AIM, Université Paris Diderot/CEA/CNRS

        Sebastien Charnoz

        LATMOS

        Francois Leblanc, Eric Quémerais

        LESIA, L’Observatoire de Paris

        Baptiste Cecconi, Carine Briand, Daniel Gautier, Laurent Lamy, Olga Alexandrova, Philippe Zarka, Pierre Henri, Regis Courtin, Renée Prangé, Sandrine Vinatier

        LPCEE, Orléans

        Aurélie Marchaudon

        LPG, CNRS-Université de Nantes

        Gabriel Tobie

        LPP, Ecole Polytechnique

        Patrick Canu

        Observatoire de Besançon

        Jean-Marc Petit, Olivier Mousis

        ONERA

        Christophe Bruno

        Université de Versailles

        Ronan Modolo

1.5 Germany

        DLR

        Frank Sohl

        Freie Universität Berlin

        Gerhard Neukum, Stephan van Gasselt

        Max Planck Institute for Solar System Research

        Ulrich Christensen, Norbert Krupp, Elias Roussos

        Technical University Braunschweig

        Karl-Heinz Glassmeier

        Universität der Bundeswehr München

        Thomas Andert, Bernd Häusler

        University of Cologne

        Fritz M Neubauer, Martin Pätzold, Joachim Saur, Silvia Tellmann

        Universität Rostock

        Nadine Nettelmann

1.6 Greece

        Academy of Athens

        Nick Sergis

1.7 Hungary

        KFKI Research Institute for Particle & Nucl. Physics

        Geza Erdös, Karoly Szego, Sándor Szalai

1.8 Israel

        Tel Aviv University

        Aharon Eviatar

1.9 Japan

        JAXA

        Sarah Badman, Satoshi Kasahara

1.10 Spain

        Centro de Astrobiologia, Madrid

        Javier Martin-Torres

        ESA ESAC

        Stefan Remus

        University of the Basque Country

        Ricardo Huesco, Santiago Perez-Hoyos, Agustín Sánchez-Lavega

1.11 Sweden

        Swedish Institute of Space Physics, Kiruna

        Stas Barabash, Yasir Soobiah

        Swedish Institute of Space Physics, Uppsala

        Jan-Erik Wahlund

1.12 United Kingdom

        Aberystwyth University

        Mario Bisi, Andy Breen, Tony Cook

        Armagh Observatory

        Tolis Christou

        Imperial College London

        Leah-Nani S. Alconcel, Michele K. Dougherty, Marina Galand, Caitríona M. Jackman, Daniel Went, Ingo Müller-Wodarg

        Open University

        Dave Rothery

        Queen Mary University of London

        Carl D. Murray, Craig B. Agnor

        University College London

        Nicholas Achilleos, Chris Arridge, Andrew Coates, M. Entradas, Andrew Fazakerley, Colin Forsyth, A. Dominic Fortes, Patrick Guio, Geraint H. Jones, Sheila Kanani, Gethyn R Lewis, Steve Miller, Adam Masters, Chris Owen, Alan Smith, Andrew P. Walsh

        University of Bristol

        Nick Teanby

        University of Leicester

        David Andrews, Emma Bunce, Stanley W H Cowley, Stephanie Kellett, Henrik Melin, Steve Milan, Jon Nichols, Tom Stallard

        University of Liverpool

        Richard Holme

        University of Oxford

        Neil Bowles, Leigh Fletcher, Pat Irwin

        University of Reading

        Matt Owens

1.13 United States of America

        Boston University

        Supriya Chakrabarti, Luke Moore

        Cornell University

        Don Banfield, Matt Hedman, Matthew Tiscareno, Phil Nicholson

        Georgia Tech

        Carol Paty

        Gordon College

        Richard W. Schmude, Jr.

        Johns Hopkins University-APL

        Pontus Brandt, Andrew Cheng, Chris Paranicas, Abigail M Rymer, H. Todd Smith, Elizabeth P Turtle

        LPI, University of Arizona

        Robert H Brown, Paul Schenk

        NASA Goddard Space Flight Centre

        Carrie M Anderson, Matt Burger, Glyn Collinson, John F Cooper, Brigette Hesman, Edward C Sittler

        NASA Jet Propulsion Laboratory

        Kevin Baines, A. Jim Friedson , Mark Hofstadter, Conor Nixon, Jim Norwood, Glenn Orton, Robert T Pappalardo, Ed Smith

        New Mexico State University

        Reta Beebe, Nancy Chanover

        Rice University

        Tom Hill

        SETI Institute

        Mark Showalter

        Southwest Research Institute, San Antonio

        Scott Bolton, Mihir Desai, Dave McComas, Prachet Mokashi, Daniel Santos-Costa

        Space Science Institute (Boulder)

        Julianne Moses

        University of California, Berkeley

        Imke de Pater

        University of California Los Angeles

        Jerry Schubert, Ravit Helled, Chris Russell, Krishan Khurana, Margaret Kivelson, Kunio Sayanagi

        University of California Santa Cruz

        Jonathan Fortney

        University of Colorado, Boulder

        Sébastien Hess, Rob Wilson

        University of Iowa

        Jared Leisner, William Kurth, Patricia Schippers, Ulrich Taubenschuss

        Washington University

        Bill McKinnon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arridge, C.S., Agnor, C.B., André, N. et al. Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp Astron 33, 753–791 (2012). https://doi.org/10.1007/s10686-011-9251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9251-4

Keywords

Navigation