Skip to main content
Log in

Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata?

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Selfing can evolve if the transmission advantage of selfers outweighs the negative effects of inbreeding depression. It has been hypothesised that on the long term, selfing lineages are an evolutionary dead end, in part due to genetic degradation resembling that of Muller’s ratchet in asexual lineages. There is a lack of empirical evidence for costs of selfing due to genetic degradation in recently evolved selfers. We tested whether such costs are apparent in recently established selfing populations of the generally outcrossing species Arabidopsis lyrata. Specifically, we compared selfing and outcrossing populations in their growth performance, and for traits that play a putative role in defence against herbivores. In line with our expectations, selfing populations had reduced germination rates, growth however was similar to outcrossing populations. Plants from selfing populations showed no consistent reduction in herbivore-defence traits, and were equally palatable to caterpillars of the moth Mamestra brassicae. There were also no differences between outcrossers and selfers in phenotypic plasticity for putative defence traits and palatability after induction by herbivores. Overall, we interpret our results as showing some evidence for persistent costs of selfing due to drift or inbreeding load in terms of reduced seedling establishment, but providing no support for the hypothesis that selfing populations should be more susceptible to generalist herbivores, or rely more on induced defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (2000) Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813

    Article  Google Scholar 

  • Baker HG (1955) Self compatibility and establishment after long distance dispersal. Evolution 9:347–349

    Article  Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-6. arXiv:1406.5823v1

  • Burd M (1994) Bateman principle and plant reproduction—the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Busch JW (2004) Inbreeding depression in self-incompatible and self-compatible populations of Leavenworthia alabamica. Heredity 94:159–165

    Article  Google Scholar 

  • Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30:479–513

    Article  Google Scholar 

  • Campbell SA, Kessler A (2013) Plant mating system transitions drive the macroevolution of defense strategies. Proc Natl Acad Sci USA 110:3973–3978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Morgan MT, Charlesworth B (1990) Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44:1469–1489

    Article  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1876) The effects of cross and self-fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Díaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508

    Article  Google Scholar 

  • Falahati-Anbaran M, Lundemo S, Agren J, Stenoien HK (2011) Genetic consequences of seed banks in the perennial herb Arabidopsis lyrata subsp petraea (Brassicaceae). Am J Bot 98:1475–1485

    Article  PubMed  Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63

    Article  Google Scholar 

  • Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK (2010) Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64:3495–3510

    Article  PubMed  Google Scholar 

  • Gols R, Wagenaar R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89:1616–1626

    Article  PubMed  Google Scholar 

  • Hayes CN, Winsor JA, Stephenson AG (2004) Inbreeding influences herbivory in Cucurbita pepo ssp. texana (Cucurbitaceae). Oecologia 140:601–608

    Article  PubMed  Google Scholar 

  • Heller R, Maynard-Smith J (1978) Does Muller’s ratchet work with selfing? Genet Res 32:289–293

    Article  Google Scholar 

  • Hoebe PN, Stift M, Tedder A, Mable BK (2009) Multiple losses of self-incompatibility in North-American Arabidopsis lyrata? phylogeographic context and population genetic consequences. Mol Ecol 18:4924–4939

    Article  CAS  PubMed  Google Scholar 

  • Hoebe PN, Stift M, Holub EB, Mable BK (2011) The effect of mating system on growth of Arabidopsis lyrata in response to inoculation with the biotrophic parasite Albugo candida. J Evol Biol 24:391–401

    Article  CAS  PubMed  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Igic B, Bohs L, Kohn JR (2006) Ancient polymorphism reveals unidirectional breeding system shifts. Proc Natl Acad Sci USA 103:1359–1363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169:93–104

    Article  Google Scholar 

  • Ioerger TR, Clark AG, Kao TH (1990) Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci USA 87:9732–9735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson MTJ, Smith SD, Rausher MD (2009) Plant sex and the evolution of plant defenses against herbivores. Proc Natl Acad Sci USA 106:18079–18084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karkkainen K, Agren J (2002) Genetic basis of trichome production in Arabidopsis lyrata. Hereditas 136:219–226

    Article  PubMed  Google Scholar 

  • Kempel A, Schadler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci USA 108:5685–5689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kivimaki M, Karkkainen K, Gaudeul M, Loe G, Agren J (2007) Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol Ecol 16:453–462

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Schemske DW, Schultz ST (1994) High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations. Evolution 48:965–978

    Article  Google Scholar 

  • Leimu R, Fischer M (2010) Between-population outbreeding affects plant defence. PLoS One 5:e12614

    Article  PubMed Central  PubMed  Google Scholar 

  • Leimu R, Kloss L, Fischer M (2008) Effects of experimental inbreeding on herbivore resistance and plant fitness: the role of history of inbreeding, herbivory and abiotic factors. Ecol Lett 11:1101–1110

    Article  PubMed  Google Scholar 

  • Levin DA (1975) Pest pressure and recombination systems in plants. Am Nat 109:437–457

    Article  Google Scholar 

  • Lewis MCF, Karrow PF, Blasco SM, McCarthy FMG, King JW, Moore TC, Rea DK (2008) Evolution of lakes in the Huron basin: deglaciation to present. Aquat Ecosyst Health 11:127–136

    Article  Google Scholar 

  • Loe G, Torang P, Gaudeul M, Agren J (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Article  Google Scholar 

  • Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580

    Article  CAS  PubMed  Google Scholar 

  • Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59:1437–1448

    Article  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res Fundam Mol Mech Mutagen 1:2–9

    Article  Google Scholar 

  • Puentes A, Agren J (2013) Trichome production and variation in young plant resistance to the specialist insect herbivore Plutella xylostella among natural populations of Arabidopsis lyrata. Entomol Exp Appl 149:166–176

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3:e2411

    Article  PubMed Central  PubMed  Google Scholar 

  • Rutter MT, Shaw FH, Fenster CB (2010) Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64:1825–1835

    Article  PubMed  Google Scholar 

  • Shaw RG, Byers DL, Darmo E (2000) Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155:369–378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sicard A, Lenhard M (2011) The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot 107:1433–1443

    Article  PubMed Central  PubMed  Google Scholar 

  • Sletvold N, Huttunen P, Handley R, Karkkainen K, Agren J (2010) Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol Ecol 24:1307–1319

    Article  Google Scholar 

  • Sletvold N, Mousset M, Hagenblad J, Hansson B, Agren J (2013) Strong inbreeding depression in two Scandinavian populations of the self-incompatible perennial herb Arabidopsis lyrata. Evolution 67:2876–2888

    PubMed  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Stephenson AG, Leyshon B, Travers SE, Hayes CN, Winsor JA (2004) Interrelationships among inbreeding, herbivory, and disease on reproduction in a wild gourd. Ecology 85:3023–3034

    Article  Google Scholar 

  • Stift M, Hunter BD, Shaw B, Adam A, Hoebe PN, Mable BK (2013) Inbreeding depression in self-incompatible North-American Arabidopsis lyrata: disentangling genomic and S-locus-specific genetic load. Heredity 110:19–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takebayashi N, Morrell PL (2001) Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am J Bot 88:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • van Leur H, Vet LE, van der Putten WH, van Dam NM (2008) Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J Chem Ecol 34:121–131

    Article  PubMed Central  PubMed  Google Scholar 

  • Vergeer P, Kunin WE (2011) Life history variation in Arabidopsis lyrata across its range: effects of climate, population size and herbivory. Oikos 120:979–990

    Article  Google Scholar 

  • Willi Y (2013) Mutational meltdown in selfing Arabidopsis lyrata. Evolution 67:806–815

    Article  PubMed  Google Scholar 

  • Wright SI, Nano N, Foxe JP, Dar V-U (2008) Effective population size and tests of neutrality at cytoplasmic genes in Arabidopsis. Genet Res 90:119–128

    Article  CAS  Google Scholar 

  • Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc B 280:20130133

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Barbara Mable for kindly providing the seeds that formed the basis of this experiment, Wayne Dawson for statistical advice, Christine Giele, Katya Mamonova and Carolin Bogs for practical assistance, the gardeners for their help with plant maintenance, Anne Kempel for discussion, Leon Westerd for providing caterpillar eggs and Gerald Mende and Dieter Schopper for use of the animal rearing facilities and practical advice; four anonymous reviewers and the editor for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Stift.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1.

Timing of germination for outcrossing (solid) and selfing (dashed) populations. Data is expressed as percentage of all sown seeds (per population), and based on eight seeds per seed family with 3 to 30 seed families per population (see Table 1 for more details). (EPS 65 kb)

Supplementary material 2 (TXT 193 kb)

Supplementary material 3 (TXT 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joschinski, J., van Kleunen, M. & Stift, M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata?. Evol Ecol 29, 749–764 (2015). https://doi.org/10.1007/s10682-015-9786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9786-3

Keywords

Navigation