Skip to main content
Log in

Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Avoidance of predation can impose opportunity costs on prey species that use behavioural avoidance strategies to evade detection. An animal that spends much time hiding or remaining immobile, for example, may have less time for other important activities such as foraging or finding mates. Here we examine the idea that the evolution of chemical defence may act to release prey from these constraints, freeing defended prey to exploit their habitats more effectively, and increasing their niche space. We tested this hypothesis using comparative methods on a mammal group containing both chemically defended and non-defended species: Musteloidea. We found that defended species had a more omnivorous diet and were more likely to be active during both day and night than non-defended species. We also found that chemically defended species were less likely to be strictly diurnal or to show sexual size dimorphism, and had earlier maturing females and a shorter lifespan than non-defended species. Taken together, our results support the hypothesis that chemical defence increases the niche space available to a species. More generally, this also supports recent suggestions that strategies taken to avoid natural enemies can have important effects on diverse components of life history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahams MV (1995) The interaction between antipredator behaviour and antipredator morphology: experiments with fathead minnows and brook sticklebacks. Can J Zool 73:2209–2215

    Article  Google Scholar 

  • Agnarsson I, Kuntner M, May-Collado LJ (2010) Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora. Mol Phylogenet Evol 54:726–745

    Article  PubMed  CAS  Google Scholar 

  • Bendt RR, Auerbach PS (1991) Foreign body reaction following stingray envenomation. J Wilderness Med 2:298–303

    Article  Google Scholar 

  • Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74:143–175

    Article  PubMed  CAS  Google Scholar 

  • Blanco MA, Sherman PW (2005) Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech Ageing Dev 126:794–803

    Article  PubMed  CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Blount JD, Speed MP, Ruxton GD, Stephens PA (2009) Warning displays may function as honest signals of toxicity. Proc R Soc Lond B Biol Sci 276:871–877

    Article  Google Scholar 

  • Bonacci T, Aloise G, Brandmayr P, Brandmayr TZ, Capula M (2008) Testing the predatory behaviour of Podarcis sicula (Reptilia: Lacertidae) towards aposematic and non-aposematic preys. Amphibia Reptilia 29:449–453

    Article  Google Scholar 

  • Bosher BT, Newton SH, Fine ML (2006) The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology 112:188–195

    Article  Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, USA, pp 331–371

    Google Scholar 

  • Burns KJ (1998) A phylogenetic perspective on the evolution of sexual dichromatism in tanagers (Thraupidae): the role of female versus male plumage. Evolution 52:1219–1224

    Article  Google Scholar 

  • Burton M (1976) Guide to the mammals of Britain and Europe. Elsevier Phaidon, Oxford, UK

    Google Scholar 

  • Caro T (2005a) Antipredator defenses in birds and mammals. University Chicago Press, Chicago, IL

    Google Scholar 

  • Caro T (2005b) The adaptive significance of coloration in mammals. Bioscience 55:125–136

    Article  Google Scholar 

  • Chanin P (1985) The natural history of otters. Croom Helm, London

    Google Scholar 

  • Chiari Y, Vences M, Vieites DR, Rabemananjara F, Bora P, Ravoahangimalala OR, Meyer A (2004) New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol Ecol 13:3763–3774

    Article  PubMed  CAS  Google Scholar 

  • Clark TW, Anderson E, Douglas C, Strickland M (1987) Martes americana. Mamm Species 289:1–8

    Article  Google Scholar 

  • Cooper WE, Sherbrooke WC (2010) Crypsis influences escape decisions in the round-tailed horned lizard (Phrynosoma modestum). Can J Zool 88:1003–1010

    Article  Google Scholar 

  • Corbet GB, Southern HN (1977) The handbook of British mammals, 2nd edn. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Darst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC (2005) Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am Nat 165:56–69

    Article  PubMed  Google Scholar 

  • Del Cerro I, Marmi J, Ferrando A, Chashchin P, Taberlet P, Bosch M (2010) Nuclear and mitochondrial phylogenies provide evidence for four species of Eurasian badgers (Carnivora). Zool Scr 39:415–425

    Article  Google Scholar 

  • Dragoo JW, Sheffield SR (2009) Conepatus leuconotus. Mamm Species 827:1–8

    Article  Google Scholar 

  • Dunstone W (1993) The mink. T&AD Poyser, London, UK

    Google Scholar 

  • Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1986) Defense against predators. In: Feder ME, Lauder GV (eds) Predator-prey relationships: perspectives and approaches from the study of lower vertebrates. University Chicago Press, Chicago, IL, pp 109–134

    Google Scholar 

  • Estes RD (1991) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University California Press, Berkeley, CA

    Google Scholar 

  • Faulkner DJ, Ghiselin MT (1983) Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Article  Google Scholar 

  • Ford LS, Hoffmann RS (1988) Potos flavus. Mamm Species 321:1–9

    Article  Google Scholar 

  • Gardezi T (1997) A comparative study of species diversity in relation to body size in carnivores (Mammalia: Carnivora). MSc thesis, Laurentian University, Ontario, Canada

  • Gompper ME (1995) Nasua narica. Mamm Species 487:1–10

    Article  Google Scholar 

  • Gompper ME, Decker DM (1998) Nasua nasua. Mamm Species 580:1–9

    Article  Google Scholar 

  • Götmark F, Unger U (1994) Are conspicuous birds unprofitable prey? Field experiments with hawks and stuffed prey species. Auk 111:251–262

    Article  Google Scholar 

  • Guilford T (1988) The evolution of conspicuous coloration. Am Nat 131:S7–S21

    Article  Google Scholar 

  • Haddad V, de Souza RA, Auerbach PS (2008) Marine catfish sting causing fatal heart perforation in a fisherman. Wilderness Environ Med 19:114–118

    Article  PubMed  Google Scholar 

  • Hanlon RT, Forsythe JW, Joneschild DE (1999) Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biol J Linn Soc 66:1–22

    Article  Google Scholar 

  • Helgen KM, Kays R, Helgen LE, Tsuchiya-Jerep MTN, Pinto CM, Koepfli K-P, Eizirik E, Maldonado JE (2009) Taxonomic boundaries and geographic distributions revealed by an integrative systematic overview of the mountain coatis, Nasuella (Carnivora: Procyonidae). Small Carnivore Conserv 41:65–74

    Google Scholar 

  • Higginson AD, Delf J, Ruxton GD, Speed MP (2011) Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. J Anim Ecol 80:384–392

    Article  PubMed  Google Scholar 

  • Hillman CN, Clark TW (1980) Mustela nigripes. Mamm Species 126:1–3

    Article  Google Scholar 

  • Hwang YT, Larivière S (2001) Mephitis macroura. Mamm Species 686:1–3

    Article  Google Scholar 

  • Hwang YT, Larivière S (2003) Mydaus javanensis. Mamm Species 723:1–3

    Article  Google Scholar 

  • Hwang YT, Larivière S (2004) Mydaus marchei. Mamm Species 757:1–3

    Article  Google Scholar 

  • Inbar M, Lev-Yadun S (2005) Conspicuous and aposematic spines in the animal kingdom. Naturwissenschaften 92:170–172

    Article  PubMed  CAS  Google Scholar 

  • Ives AR, Garland T (2010) Phylogenetic logistic regression for binary dependent variables. Syst Biol 59:9–26

    Article  PubMed  Google Scholar 

  • Kingdon J (1977) East African mammals: an atlas of evolution in Africa, vol 3 part A. Academic Press, London

    Google Scholar 

  • Lakshmanan P, Roy S, Fairclough JA (2004) Management of crown-of-thorns starfish injury. Foot Ankle Surg 10:155–157

    Article  Google Scholar 

  • Larivière S (1998) Lontra felina. Mamm Species 575:1–5

    Google Scholar 

  • Larivière S (1999a) Mustela vison. Mamm Species 608:1–9

    Google Scholar 

  • Larivière S (1999b) Lontra longicaudis. Mamm Species 609:1–5

    Google Scholar 

  • Larivière S (2002a) Ictonyx striatus. Mamm Species 698:1–5

    Article  Google Scholar 

  • Larivière S (2002b) Lutra maculicollis. Mamm Species 712:1–6

    Article  Google Scholar 

  • Larivière S, Walton LR (1998) Lontra canadensis. Mamm Species 587:1–8

    Google Scholar 

  • Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81:526–550

    Article  PubMed  Google Scholar 

  • Lindstedt C, Lindström L, Mappes J (2008) Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Anim Behav 75:1703–1713

    Article  Google Scholar 

  • Long CA (1973) Taxidea taxus. Mamm Species 26:1–4

    Article  Google Scholar 

  • Lotze J-H, Anderson S (1979) Procyon lotor. Mamm Species 119:1–8

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75. http://mesquiteproject.org

  • Marmi J, López-Giráldez JF, Domingo-Roura X (2004) Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zool Scr 33:481–499

    Article  Google Scholar 

  • Merilaita S, Tullberg BS (2005) Constrained camouflage facilitates the evolution of conspicuous warning coloration. Evolution 59:38–45

    PubMed  Google Scholar 

  • Moors PJ (1980) Sexual dimorphism in the body size of mustelids (Carnivora): the roles of food habits and breeding systems. Oikos 34:147–158

    Article  Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405

    Article  Google Scholar 

  • Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045

    Article  Google Scholar 

  • Neal E, Cheeseman C (1996) Badgers. T&AD Poyser, London

    Google Scholar 

  • Nilsson M, Forsman A (2003) Evolution of conspicuous coloration, body size and gregariousness: a comparative analysis of lepidopteran larvae. Evol Ecol 17:51–66

    Article  Google Scholar 

  • Nyakatura K, Bininda-Emonds ORP (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10:12

    Article  PubMed  Google Scholar 

  • Ortolani A (1999) Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biol J Linn Soc 67:433–476

    Article  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci 255:37–45

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167:808–825

    Article  PubMed  Google Scholar 

  • Pasitschniak-Arts M, Larivière S (1995) Gulo gulo. Mamm Species 499:1–10

    Google Scholar 

  • Pearson DL (1985) The function of multiple anti-predator mechanisms in adult tiger beetles (Coleoptera: Cicindelidae). Ecol Entomol 10:65–72

    Article  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. Br Med J 316:1236–1238

    Article  CAS  Google Scholar 

  • Poglayen-Neuwall I, Toweill DE (1988) Bassariscus astutus. Mamm Species 327:1–8

    Article  Google Scholar 

  • Pomini AM, Machado G, Pinto-da-Rocha R, Macías-Ordóñez R, Marsaioli AJ (2010) Lines of defense in the harvestman Hoplobunus mexicanus (Arachnida: Opiliones): aposematism, stridulation, thanatosis, and irritant chemicals. Biochem Syst Ecol 38:300–308

    Article  CAS  Google Scholar 

  • Powell RA (1981) Martes pennanti. Mamm Species 156:1–6

    Google Scholar 

  • Prange S, Prange TJ (2009) Bassaricyon gabbii. Mamm Species 826:1–7

    Article  Google Scholar 

  • Przeczek K, Mueller C, Vamosi SM (2008) The evolution of aposematism is accompanied by increased diversification. Integr Zool 3:149–156

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sagegami-Oba R, Takahashi N, Oba Y (2007) The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 400:104–113

    Article  PubMed  CAS  Google Scholar 

  • Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175–6180

    Article  PubMed  CAS  Google Scholar 

  • Santos JC, Coloma LA, Cannatella DC (2003) Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Natl Acad Sci USA 100:12792–12797

    Article  PubMed  CAS  Google Scholar 

  • Schaefer H-C, Vences M, Veith M (2002) Molecular phylogeny of Malagasy poison frogs, genus Mantella (Anura: Mantellidae): homoplastic evolution of colour pattern in aposematic amphibians. Org Divers Evol 2:97–105

    Article  Google Scholar 

  • Sheffield SR, King CM (1994) Mustela nivalis. Mamm Species 454:1–10

    Article  Google Scholar 

  • Sheffield SR, Thomas HH (1997) Mustela frenata. Mamm Species 570:1–9

    Article  Google Scholar 

  • Sillén-Tullberg B (1988) Evolution of gregariousness in aposematic butterfly larvae: a phylogenetic analysis. Evolution 42:293–305

    Article  Google Scholar 

  • Speed MP (2000) Warning signals, receiver psychology and predator memory. Anim Behav 60:269–278

    Article  PubMed  Google Scholar 

  • Speed MP, Ruxton GD (2005) Aposematism: what should our starting point be? Proc R Soc Lond B Biol Sci 272:431–438

    Article  Google Scholar 

  • Speed MP, Brockhurst MA, Ruxton GD (2010) The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64:1622–1633

    Article  PubMed  Google Scholar 

  • Stamp NE, Wilkens RT (1993) On the cryptic side of life: being unapparent to enemies and the consequences for foraging and growth of caterpillars. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, USA, pp 283–330

    Google Scholar 

  • Stankowich T (2011) Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt Behav 20:32–43

    Article  Google Scholar 

  • Stankowich T, Caro T, Cox M (2011) Bold coloration and the evolution of aposematism in terrestrial carnivores. Evolution 65:3090–3099

    Article  PubMed  Google Scholar 

  • Stankowich T, Haverkamp P, Caro T (in review) Ecological drivers of antipredator defenses in mammals

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stewart TW, Gafford JC, Miner JG, Lowe RL (1999) Dreissena-shell habitat and antipredator behavior: combined effects on survivorship of snails co-occurring with molluscivorous fish. J North Am Benthol Soc 18:274–283

    Article  Google Scholar 

  • Tullberg BS, Hunter AF (1996) Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biol J Linn Soc 57:253–276

    Article  Google Scholar 

  • Vamosi SM (2005) On the role of enemies in divergence and diversification of prey: a review and synthesis. Can J Zool 83:894–910

    Article  Google Scholar 

  • Vences M, Kosuch J, Boistel R, Haddad CFB, La Marca E, Lötters S, Veith M (2003) Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org Divers Evol 3:215–226

    Article  Google Scholar 

  • Verts BJ, Carraway LN, Kinlaw A (2001) Spilogale gracilis. Mamm Species 674:1–10

    Article  Google Scholar 

  • Wade-Smith J, Verts BJ (1982) Mephitis mephitis. Mamm Species 173:1–7

    Article  Google Scholar 

  • Walker EP (1964) Mammals of the world, vol 2. John Hopkins Press, Baltimore, MD

    Google Scholar 

  • Wallace AR (1889) Darwinism: an exposition of the theory of natural selection with some of its applications. MacMillan and Co, London

    Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson M, Pisani D, Cotton JA, Corfe I (2005) Measuring support and finding unsupported relationships in supertrees. Syst Biol 54:823–831

    Article  PubMed  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Witz BW (1990) Antipredator mechanisms in arthropods: a twenty year literature survey. Fla Entomol 73:71–99

    Article  Google Scholar 

  • Youngman PM (1990) Mustela lutreola. Mamm Species 362:1–3

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ted Garland for kindly providing the Matlab programs used herein. M.P.S. thanks Andrew Higginson (University of Bristol) for preliminary help with comparative methods. We also thank Tim Caro for valuable discussions and two anonymous reviewers for valuable comments on the manuscript. This work was funded by a NERC Doctoral Training Grant to K.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Arbuckle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbuckle, K., Brockhurst, M. & Speed, M.P. Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evol Ecol 27, 863–881 (2013). https://doi.org/10.1007/s10682-013-9629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-013-9629-z

Keywords

Navigation