Skip to main content

Advertisement

Log in

Development and screening of Fusarium wilt resistant lines in Sweet potato [Ipomoea batatas (L.) Lam]

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fusarium wilt is among the major soil borne fungal diseases hindering sweet potato production in temperate regions of the world. Resistant cultivars are important for commercial production as the impact of Fusarium wilt is aggravating due to intensifying climate variability, thus the need for quick screening methods. The objectives of this study were to test a quick screening method at the early growth stage, to identify resistant parents, and to screen resultant progenies for resistance under glasshouse and field conditions. Virulent isolates of Fusarium oxysporum f. sp. batatas (PPRI15907) and F. oxysporum f. sp. vanillae (PPRI9458) were used. The soil was artificially inoculated and planted with month-old sweet potato plantlets. Visual leaf and stem disease assessments were recorded at 6 weeks after planting using an ordinal rating scale (0–3). Both leaf and stem disease assessment results indicated significant variation (P ≤ 0.05) in the disease reaction of the genotypes. Based on stem disease severity index (DSI) as determined from the quick screening, Bonita (4.2%) and Monate (8.3%) were classified as resistant, and Blesbok (66%) and Lethlabula (81%) as highly susceptible parents. Furthermore, DSI categorized the 92 progenies into 44 resistant, 21 moderately resistant, 13 moderately susceptible, seven susceptible and seven highly susceptible genotypes. The field experiment confirmed that 84% of genotypes that were identified to be resistant to Fusarium wilt under glasshouse conditions, were also resistant under field conditions. Thus the glasshouse method is reliable, efficient, and can screen large numbers of sweet potato genotypes for resistance against virulent Fusarium oxysporum isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AA, Karban R (1999) Why induced defences may be favoured over constitutive strategies in plants. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defences. Princeton University Press, Princeton, pp 45–61

    Google Scholar 

  • Agrios GN (1988) Plant pathology, 3rd edn. Academic Press, New York, p 803

    Google Scholar 

  • Ames T, Smit NEJM, Braun AR, O’Sullivan JN, Skoglund LG (1996) Sweetpotato: Major Pests, Diseases, and Nutritional Disorders. International Potato Centre (CIP). Lima, Peru. pp.78─88

  • Bani M, Rubiales D, Rispail N (2012) A detailed method to identify sources of quantitative resistance to Fusarium oxysporum f.sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty JV, Pfeiffer WH (2013) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1):S31–S40

    Google Scholar 

  • Brayford D (1992) Fusarium oxysorum f. sp. batatas: IMI Description of fungi and bacteria. Mycopathologia 118:41–42

    Article  Google Scholar 

  • Burger Y, Katzir N, Tzuri G, Portnoy V, Saar U, Shriber S, Perl-Treves R, Cohen R (2003) Variation in the response of melon genotypes to Fusarium oxysporum f. sp. melonis race 1 determined by inoculation tests and molecular markers. Plant Pathol 52:204–211

    Article  CAS  Google Scholar 

  • Chang K, Lo H, Lai Y, Yao P, Lin K, Hwang S (2009) Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas). Bot Stud 50:43–55

    CAS  Google Scholar 

  • Clark CA, Hyun J-W, Hoy MW (1998) Relationships among wilt inducing isolates of Fusarium oxysporum from sweetpotato and tobacco. Plant Dis 82:530–536

    Article  CAS  Google Scholar 

  • Clark CA, Moyer JW (1988) Compendium of sweetpotato diseases. USA. The American Phytopathological Society, pp. 26–28

  • Clark CA, Ferrin DM, Smith TP, Holmes GJ (2013) Compendium of sweetpotato diseases, pests and disorder. 2nd Edition. APS. https://doi.org/10.1094/9780890544952

  • Collins WW (1977) Diallel analysis of sweetpotatoes for resistance to Fusarium wilt. J Am Soc HortSci 102:109–111

    Google Scholar 

  • DAFF (2019) A profile of the South African sweetpotato market value chain 2019. Directorate of marketing, Pretoria, South Africa. http://www.dalrrd.gov.za. Accessed 7 August 2020

  • Dau N (2017) Characterization, pathogenicity and cultivar screening of Fusarium wilt of sweet potato in South Africa. Dissertation, Tshwane University of Technology: Agriculture in the Department of Crop Sciences, Faculty of Science, Pretoria. pp 88─95

  • Egel DS, Martyn RD (2013) Fusarium wilt of watermelon and other cucurbits. The plant health instructor. The American Phytopathological society. pp. 1–11

  • FAOSTAT (2018) Food and agriculture data. http://www.fao.org/faostat/en/#home. Accessed 29 August 2019

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502. https://doi.org/10.1046/j.1469-8137.2003.00700.x

    Article  CAS  PubMed  Google Scholar 

  • Hossain MT, Hossain SMM, Bakr MA, Rahman AKMM, Uddin SN (2010) Survey on major diseases on vegetable and fruit crops in Chittagong Region. Bangladesh J Agric Res 35(3):423–429

    Article  Google Scholar 

  • Jackson DM, Boha JR, Thies JA, Harrison HF (2010) ‘Charleston Scarlet’ sweetpotato. HortScience 45:306–309

    Article  Google Scholar 

  • Jasuja ND, Saxena R, Chandra S, Joshi SC (2013) Isolation and identification of microorganism from polyhouse agriculture soil of Rajasthan Nakuleshwar. Afr J Microbiol Res 7(41):4886–4891

    Article  Google Scholar 

  • Kover PX, Schaal BA (2002) Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc Natl Acad Sci USA 99:11270–11274

    Article  CAS  Google Scholar 

  • Koyyappurath S, Conéjéro G, Dijoux JB, Lapeyre-Montès F, Jade K, Chiroleu F, Gatineau F, Verdeil JL, Besse P, Grisoni M (2015) Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. Front Plant Sci 6:1125. https://doi.org/10.3389/fpls.2015.01125

    Article  PubMed  PubMed Central  Google Scholar 

  • LaBonte DR, Villordon AQ, Clark CA (2008) ”Murasaki-29” sweetpotato. J Am Soc Hortic Sci 43:1895–1896

    Google Scholar 

  • LaBonte DR, Clark CA, Villordon AQ, Smith T (2011) Bonita Sweetpotato. HortScience 46(6):949–949

    Google Scholar 

  • Laurie SM, Tjale SS, van den Berg AA, Mtileni MM, Labuschagne MT (2015) Agronomic performance of new cream to yellow-orange sweetpotato varieties in diverse environments across South Africa. S Afr J Plant Soil 32(3):147–155

    Article  Google Scholar 

  • Laurie SM, Myeza PN, Mulabisana MJ, Mabasa KG, Thompson A, Greyling R, Cloete M, Adebola PO (2016) In-vitro propagation and disease testing as a means of producing healthy planting materials to support root and tuber crops production in South Africa. Acta Hort 1113:225–232

    Article  Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops cassava, sweetpotato, yams and aroids. CABI, Oxfordshire, UK, Lerner B.R., [s.a]. The sweetpotato. Purdue University Cooperative Extension Service. pp. 91─274. http://www.hort.purdue.edu/ext/HO-136. Accessed 17 May 2020

  • Lin Y, Zou W, Lin S, Onofua D, Yang Z, Chen H, Wang S, Chen X (2017) Transcriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas. PLoS ONE 12(11):e0187838. https://doi.org/10.1371/journal.pone.0187838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Yang Z, Huang B, Bi C, Huang X, Chen G, Nijiati N, Chen X (2020) Comparative proteomic analysis of the sweetpotato provides insights into response mechanisms to Fusarium oxysporum f. sp. batatas. Sci Rep 10:21368. https://doi.org/10.1038/s41598-020-78557-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Lavallea BLA, Pottera N, Brubaker CL (2012) Development of a rapid, accurate glasshouse bioassay for assessing fusarium wilt disease responses in cultivated Gossypium species. Plant Pathol 61:1112–1120

    Article  Google Scholar 

  • McClure FT (1949) Mode of infection of the sweetpotato wilt Fusarium. Phytopathology 39:876–886

    Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10(3):311–324

    Article  CAS  Google Scholar 

  • Mirzapou S, Darvishnia M, Bazgir E, Goodarzi D (2014) Identification of resistant sources in chickpea against Fusarium wilt under greenhouse condition. IJFAS 3(7):772–776

    Google Scholar 

  • Mwanga ROM, Swanckaert J, da Silva PG, Andrade MI, Makunde G, Gruneberg WJ, Kreuze JF et al (2021) Breeding progress for vitamin A, iron and zinc biofortification, drought tolerance, and sweetpotato virus disease resistance in sweetpotato. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2021.616674

    Article  Google Scholar 

  • Nazir N, Mirza JH, Akhtar N, Bajwa R, Nasin G (2007) Some studies of thermophilic and thermotolerant fungi from Lahore, Pakistan. Mycopath 5:95–100

    Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) The potential of non-pathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55:217–223

    Article  Google Scholar 

  • Nkosi BZ (2020) Characterisation of Fusarium Oxysporum Species Complex Associated with Fusarium Wilt of Sweet Potato in South Africa. Dissertation, University of South Africa, College of Agriculture and Environmental Sciences and Consumer Science, Pretoria. https://uir.unisa.ac.za/handle/10500/26613

  • Paul NC, Park W, Lee S, Chung MN, Lee HU, Yang JW (2020) Occurrence of sweetpotato (Ipomoea batatas) wilt and surface rot disease and determining resistance of selected varieties to the pathogen in Korea. Plants 9:497. https://doi.org/10.3390/plants9040497

    Article  CAS  PubMed Central  Google Scholar 

  • Pérez-Vicente L, Dita MA, Martinez-de La parte E (2014) Technical manual prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (TR4). W Diag Fus Wilt 4:1–74

    Google Scholar 

  • Pinaria AG, Laurence MH, Burgess LW, Liew ECY (2015) Phylogeny and origin of Fusarium oxysporum f. sp. vanillae in Indonesia. Plant Pathol 64(6):1358–1365

    Article  CAS  Google Scholar 

  • Ribeiro DO, Vale FX, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatol Bras 26:577–589

    Article  Google Scholar 

  • Rossel G, Espinoza C, Javier am, Tay D (2008) In: Crop specific regeneration guidelines [CD-ROM]. CGIAR System-wide Genetic Resource Programme. Regeneration guidelines: sweetpotato. Rome, Italy. pp. 9

  • Smith S, Snyder W (1971) Relationship of inoculum density and soil types to severity of Fusarium wilt of sweetpotato. Phytopathology 61:1049–1051. https://doi.org/10.1094/Phyto-61-1049

    Article  Google Scholar 

  • Stoilova T, Chavdrov P (2006) Evaluation of lentil germplasm for disease resistance to Fusarium wilt (Fusarium oxysporum f. sp. Lentis). JCEA 7(1):121–126

    Google Scholar 

  • Thompson AH (2011) Crop protection: a disease survey of Fusarium wilt and Alternaria blight on sweetpotato in South Africa. Crop Prot 30:409–1413

    Article  Google Scholar 

  • Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Plant Sci 5:168

    Google Scholar 

  • VSN International (2021) Genstat for Windows 21st Edition. VSN International, Hemel Hempstead, UK. https://www.genstat.co.uk

  • Yang Z, Lin Y, Chen H, Zou W, Wang S, Guo Q, Chen X (2018) A rapid seedling assay for determining sweetpotato resistance to Fusarium Wilt. Crop Sci 58:1558–1565. https://doi.org/10.2135/cropsci2017.10.0600

    Article  CAS  Google Scholar 

  • Yencho GC, Pecota KV, Schultheis JR (2008) Covington Sweetpotato. HortScience 43(6):1911–1914

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Research Foundation of South Africa (RTF150520118160). The assistance of Dr. Mariette Truter, Andre van der Berg, Dr. Riana Jacobs and Dr. Rene Sutherland are acknowledged, as well as Ms. Julia Masangu, Mr. Dakalo Daba and Ms. Shelly Maake for technical assistance.

Funding

Funding was provided by the National Research Foundation of South Africa (RTF150520118160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Mphela.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mphela, W.M., Laurie, S.M., Minnaar-Ontong, A. et al. Development and screening of Fusarium wilt resistant lines in Sweet potato [Ipomoea batatas (L.) Lam]. Euphytica 218, 68 (2022). https://doi.org/10.1007/s10681-022-03016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03016-w

Keywords

Navigation