Skip to main content

Advertisement

Log in

Identifying drought-resilient flax genotypes and related-candidate genes based on stress indices, root traits and selective sweep

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Drought hampers flax yield and oil quality particularly at the reproductive stage. Here, 105 flax accessions were assessed for drought tolerance under irrigated and drought-stressed conditions across three environments using eight stress indices. Total root length (TRL), total root volume (TRV) and diameter class length (DCL) were analyzed in two selected groups of accessions contrasting for drought tolerance. These genotypes were further submitted to selective sweep analysis using 394 genome-wide microsatellite (SSR) loci to identify markers potentially associated with drought tolerance and drought-responsive candidate genes. The results obtained for yield under stress (Ys) and yield under irrigated condition (Yp) indicated significant genotypic response to water treatments (P < 0.001). Hierarchical clustering and heatmap analyses of stress indices identified the oil type flax cultivars O_CAN_C_CN19004 (AC Emerson) and O_CAN_C_CN19003 (AC McDuff) as the most drought tolerant. Some fiber type flax accessions were also clustered in the tolerant group. The drought tolerant group showed 29, 42, and 22% superior TRL, TRV and DCL, respectively, than its sensitive counterpart under drought. The SSR loci under selective sweep, Lu254 and Lu709 were significantly associated with Ys, and accessions carrying the favorable haplotype exhibited 21.7% higher Ys. Various candidate genes involved in absicic acid pathway, auxin signaling, Ca2+ signaling, photosynthesis regulation, and drought-responsive transcription factors were identified at the selective sweep loci. The identified tolerant accessions can be used for conferring drought tolerance to elite cultivars, while the selective sweep SSR loci linked to drought-responsive candidate genes could be useful in MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This work was funded by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Project No. 1161133, and supported by the Agriaquaculture Nutritional Genomic Center (CGNA), the Programa Regional de Investigación Científica y Tecnológica and the Gobierno Regional de La Araucania, Chile. CGNA acknowledges the collaboration of Agriculture and Agri-Food Canada (AAFC) and the Total Utilization Flax GENomics (TUFGEN) project formerly funded by Genome Canada and other stakeholders of the Canadian flax industry. Dr. Bradley Till is also gratefully acknowledged for his helpful suggestions in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braulio J. Soto-Cerda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto-Cerda, B.J., Cloutier, S., Gajardo, H.A. et al. Identifying drought-resilient flax genotypes and related-candidate genes based on stress indices, root traits and selective sweep. Euphytica 215, 41 (2019). https://doi.org/10.1007/s10681-019-2362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2362-0

Keywords

Navigation