Skip to main content
Log in

Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tiller number per plant (TN) and plant height (PH) are important agronomic traits related to grain yield (GY) in rice (Oryza sativa L.). A total of 30 additive quantitative trait loci (A-QTL) and 9 significant additive × environment interaction QTLs (AE-QTL) were detected, while the phenotypic and QTL correlations confirmed the intrinsic relationship of the three traits. These QTLs were integrated with 986 QTLs from previous studies by metaanalysis. Consensus maps contained 7156 markers for a total map length of 1112.71 cM, onto which 863 QTLs were projected; 78 meta-QTLs (MQTLs) covering 11 of the 30 QTLs were detected from the cross between Dongnong422 and Kongyu131 in this study. A total of 705 predicted genes were distributed over the 21 MQTL intervals with physical length <0.3 Mb; 13 of the 21 MQTLs, and 34 candidate genes related to grain yield and plant development, were screened. Five major QTLs, viz. qGY6-2, qPH7-2, qPH6-3, qTN6-1, and qTN7-1, were not detected in the MQTL intervals and could be used as newly discovered QTLs. Candidate genes within these QTL intervals will play a meaningful role in molecular marker-assisted selection and map-based cloning of rice TN, PH, and GY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh S, Palchamy A, Sadasivam S, Sarkarung S (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43(4):1457–1469

    Article  CAS  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact MPMI 21(7):859–868

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, McCouch S, Kuiper M, Kang M-R, Pot J, Groenen J, Eun M (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97(3):370–380

    Article  CAS  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: a meta-analysis from a drought QTL database. Rice 2(2–3):115–128

    Article  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theißen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J Cell Mol Biol 61(5):767–781

    Article  CAS  Google Scholar 

  • Cui K, Peng S, Ying Y, Yu S, Xu C (2015) Molecular dissection of the relationships among tiller number, plant height and heading date in rice. Plant Prod Sci 7(3):309–318

    Article  Google Scholar 

  • Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Tao L, Guan H, Pan R, Xue Y (2012) Dwarf and deformed flower? Encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). Plant J 72(5):829–842

    Article  PubMed  CAS  Google Scholar 

  • Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5(10):3–8

    Article  Google Scholar 

  • Gothandam KM, Nalini E, Karthikeyan S, Jeongsheop S (2010) OsPRP3, a flower-specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol 72(1–2):125–135

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–529

    Article  PubMed  CAS  Google Scholar 

  • Hiroshi S, Cogan Noel OI, Spangenberg GC, Forster JW (2012) Quantitative trait locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet 13(1):1–12

    Google Scholar 

  • Hong Z, Ueguchitanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Immanuel SC, Nagarajan P, Thiyagarajan K, Bharathi M, Rabindran R (2011) Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistant genotypes of rice (Oryza sativa L.). Afr J Biotech 10(17):3322–3334

    Article  Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genom 10(1):1–14

    Article  CAS  Google Scholar 

  • Kondhia A, Tabien RE, Ibrahim A (2015) Evaluation and selection of high biomass rice (Oryza sativa L.) for drought tolerance. Am J Plant Sci 6(12):1962–1972

    Article  CAS  Google Scholar 

  • Larsen RJ, Marx ML (1985) An introduction to probability and its applications, vol 85, (2). Prentice Hall, Englewood Cliffs, pp 2061–2071

  • Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice shape. (Oryza sativa L.). Mol Breed 4(5):419–426

    Article  CAS  Google Scholar 

  • Li Z, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109(2):79–84

    Article  CAS  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F (2003) Control of tillering in rice. Nature 422(6932):618–621

    Article  PubMed  CAS  Google Scholar 

  • Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20(7):838–849

    Article  PubMed  Google Scholar 

  • Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene larger panicle improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013

    Article  PubMed  CAS  Google Scholar 

  • Li WT, Liu C, Liu YX, Pu ZE, Dai SF, Wang JR, Lan XJ, Zheng YL, Wei YM (2013) Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189(1):31–49

    Article  CAS  Google Scholar 

  • Loughlin J, Dowling B, Mustafa Z, Smith A, Sykes B, Chapman K (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10(1):1–24

    Article  CAS  Google Scholar 

  • Ma X, Feng DS, Wang HG, Li XF, Kong LR (2011) Cloning and expression analysis of wheat cytokinin oxidase/dehydrogenase gene TaCKX3. Plant Mol Biol Report 29(1):98–105

    Article  CAS  Google Scholar 

  • Machado S, Bynum ED, Archer TL, Lascano RJ, Wilson LT, Bordovsky J, Segarra E, Bronson K, Nesmith DM, Xu W (2002) Spatial and temporal variability of corn growth and grain yield. Crop Sci 42(5):1564–1576

    Article  Google Scholar 

  • Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Takamure I, Ahmed N, Kyozuka J (2005) Bunketsu-waito, one of the tillering dwarfs, is controlled by a single recessive gene in rice (Oryza sativa L.). Breed Sci 55(2):193–196

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207

    Article  PubMed  CAS  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Hjr G, Guimaraes E, Tohme J, Mccouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102(1):41–52

    Article  CAS  Google Scholar 

  • Ni DH, Li J, Duan YB, Yang YC, Wei PC, Xu RF, Li CR, Liang DD, Li H, Song FS (2014) Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). J Exp Bot 65(8):2107–2117

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269(5231):1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Khush GS, Cassman KG (1994) Evolution of the new plant ideo-type for increased yield potential. In: Cassman KG (ed) Breaking the yield barrier. IRRI, Los Banos, pp 5–20

    Google Scholar 

  • Ranawake A, Amarasinghe U (2015) Changes in yield potential of traditional rice cultivars with variability in plant height, tillers per plant, fertility and days to maturity. J Sci Res Rep 4:114–122

    Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Peng WC, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield-related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14(1):1–22

    Article  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24(1):105–109

    Article  PubMed  CAS  Google Scholar 

  • Sarla N, Pradeep M, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6(1):1–12

    Google Scholar 

  • Septiningsih E, Prasetiyono J, Lubis E, Tai T, Tjubaryat T, Moeljopawiro S, McCouch S (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Laureles EV, Mazaredo AM (1997) Lodging reduces the yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Res 49(2–3):95–106

    Article  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28(15):2082–2083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from interspecific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29(3):663–680

    Article  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venuprasad R, Dalid CO, Del VM, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120(1):177–190

    Article  PubMed  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8(1):1–16

    Article  CAS  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang JX, Sun J, Li CX, Liu HL, Wang JG, Zhao HW, Zou DT (2016a) Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions. J Integr Agric 15(12):2688–2702

    Article  Google Scholar 

  • Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016b) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243(2):459–471

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W (2016) Quantitative trait loci identification and meta-analysis of rice panicle-related traits. Mol Genet Genomics 291(5):1927–1940

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Tagtheoretical & Applied Geneticstheoretische Und Angewandte Genetik 92(2):230–244

    Article  CAS  Google Scholar 

  • Xing Y, Tan Y, Xu C, Hua J, Sun X (2001) Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin 43(8):840–845

    CAS  Google Scholar 

  • Xiong ZM, Hangzhou H (1994) Research outline on rice genetics in China. Chin Rice Res Newsl 2:10

    Google Scholar 

  • Xu YB, Shen ZT (1991) Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.). Theor Appl Genet 83(2):243–249

    Article  PubMed  CAS  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97(1–2):267–274

    Article  CAS  Google Scholar 

  • Yang W, Gao M, Yin X, Liu J, Xu Y, Zeng L, Li Q, Zhang S, Wang J, Zhang X (2013) Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant 6(6):1945–1960

    Article  PubMed  CAS  Google Scholar 

  • Yang LM, Liu HL, Lei L, Zhao HW, Wang JG, Li N, Sun J, Zheng HL, Zou DT (2018) Identification of QTLs controlling low-temperature germinability and cold tolerance at the seedling stage in rice (Oryza sativa L.). Euphytica 214(1):13

    Article  CAS  Google Scholar 

  • Yin Z, Qi H, Chen Q, Zhang Z, Jiang H, Zhu R, Hu Z, Wu X, Li C, Zhang Y (2017) Soybean plant height QTL mapping and meta-analysis for mining candidate genes. Plant Breed 136(5):688–698

    Article  CAS  Google Scholar 

  • Zhang X, Guo X, Lei C, Cheng Z, Lin Q, Wang J, Wu F, Wang J, Wan J (2011) Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Report 29(1):185–196

    Article  CAS  Google Scholar 

  • Zhang H, Uddin MS, Zou C, Xie C, Xu Y, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Plant Ecol 56(3):262–270

    CAS  Google Scholar 

  • Zhao L, Liu HJ, Zhang CX, Wang QY, Li XH (2015) Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Genet Mol Res Gmr 14(1):961–970

    Article  PubMed  CAS  Google Scholar 

  • Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL (2002) Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet 105(8):1137–1145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (31601377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Zou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Zheng, H.L., Wang, J.G. et al. Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis. Euphytica 214, 109 (2018). https://doi.org/10.1007/s10681-018-2187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2187-2

Keywords

Navigation