Skip to main content
Log in

Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their associations with plant height and heading date in wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici (also known as Mycosphaerella graminicola), is one of the most devastating foliar wheat diseases worldwide. Host resistance is the most effective strategy for management of the disease. A factor that complicates the determination of resistance is its reported interaction with heading date (Hd) and plant height (Ph). In this study, we report findings from a genome-wide association study of resistance to STB in a world-wide collection of 96 wheat accessions. The collection was evaluated under conditions of artificial infection for seedling and adult plant STB resistance, Hd and Ph in field trials. Marker-trait associations (MTAs) were detected using a mixed linear model. STB disease severities showed significant phenotypic variation. In total, 73 MTAs involving STB resistance were detected. The chromosomal locations of some of them were similar to known Stb genes or quantitative trait loci; whereas others were detected in new genomic regions. The field experiment showed evidence of genetic association between STB resistance and Hd, but only for a few genotypes. This was corroborated at the molecular level, where a total of eight genomic regions associated with STB resistance were located in similar positions to MTAs for Hd. New genomic regions associated with STB resistance found here could be useful in wheat breeding aimed at controlling STB after validation in relevant genetic backgrounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101:1301–1310. doi:10.1094/phyto-03-11-0076

    Article  PubMed  Google Scholar 

  • Arama PF, Parlevliet JE, van Silfhout CH (1999) Heading date and resistance to Septoria tritici blotch in wheat not genetically associated. Euphytica 106:63–68. doi:10.1023/A:1003593218761

    Article  Google Scholar 

  • Arraiano LS, Browm JKM (2006) Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol 55:726–738. doi:10.1111/j.1365-3059.2006.01444.x

    Article  Google Scholar 

  • Arraiano LS, Brading PA, Brown JKM (2001) A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol 50:339–346. doi:10.1046/j.1365-3059.2001.00570.x

    Article  Google Scholar 

  • Baltazar BM, Scharen AL, Kronstad WE (1990) Association between dwarfing genes Rht1 and Rht2 and resistance to Septoria tritici blotch in winter wheat (Triticum aestivum L.). Theor Appl Genet 79:422–426. doi:10.1007/bf01186089

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Chartrain L, Lasserre-Zuber P, Saintenac C (2015) Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 79:33–41. doi:10.1016/j.fgb.2015.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools HJ, Fraaije BA (2008) Are azole fungicides losing ground against Septoria wheat disease resistance mechanisms in Mycosphaerella graminicola. Pest Manag Sci 64:681–684. doi:10.1002/ps.1568

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera- Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913. doi:10.1534/genetics.107.078659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley H, Shaw MW, Mehenni-Ciz J, Spink J, Kildea S (2016) Detection of Zymoseptoria tritici SDHI-insensitive field isolates carrying the SdhC-H152R and SdhD-R47W substitutions. Pest Manag Sci 72:2203–2207. doi:10.1002/ps.4269

    Article  CAS  PubMed  Google Scholar 

  • Edae EA, Byrne PF, Haley S, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807. doi:10.1007/s00122-013-2257-8

    Article  CAS  PubMed  Google Scholar 

  • Eriksen L, Munk L (2003) The occurrence of Mycosphaerella graminicola and its anamorph Septoria tritici in winter wheat during the growing season. Eur J Plant Pathol 109:253–259. doi:10.1023/a:1022851502770

    Article  Google Scholar 

  • Eyal Z (1981) Integrated control of Septoria diseases of wheat. Plant Dis 65:763–768. doi:10.1094/pd-65-763

    Article  Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, van Ginkel M (1987) The Septoria diseases of wheat: concepts and methods of disease management. International Maize and Wheat Improvement Centre (CIMMYT), Mexico

  • GenStat for Windows 12 Th Edition (2009) Copyright VSN International Ltd

  • Goodwin SB (2007) Back to basics and beyond: increasing the level of resistance to Septoria tritici blotch in wheat. Aust Plant Pathol 36:532–538. doi:10.1071/ap07068

    Article  Google Scholar 

  • Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF et al (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7(6):e1002070. doi:10.1371/journal.pgen.1002070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudemand E, Laurent V, Duchalais L, Tabib Ghaffary SM, Kema GHJ, Lonnet P, Margale E, Robert O (2013) Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breed 32:563–584. doi:10.1007/s11032-013-9890-4

    Article  CAS  Google Scholar 

  • Gurung S, Bonman JM, Ali S, Patel J, Myrfield M, Mergoum M, Singh PK, Adhikari TB (2009) New and diverse sources of multiple disease resistance in wheat. Crop Sci 49:1655–1666. doi:10.2135/cropsci2008.10.0633

    Article  CAS  Google Scholar 

  • Hess DE, Shaner G (1987) Effect of moisture and temperature on development of Septoria tritici blotch in wheat. Phytopathology 77:215–219

    Article  Google Scholar 

  • Jlibene M, Gustafson JP, Rajaram S (1994) Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breed 112:301–310. doi:10.1111/j.1439-0523.1994.tb00688.x

    Article  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckermann D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723. doi:10.1534/genetics.107.080101

    Article  PubMed  PubMed Central  Google Scholar 

  • King JE, Cook RJ, Melville SC (1983) A review of Septoria diseases of wheat and barley. Ann Appl Biol 103:345–373. doi:10.1111/j.1744-7348.1983.tb02773.x

    Article  Google Scholar 

  • Kobiljski B, Quarrie SA, Dencic S, Kirby J, Iveges M (2002) Genetic diversity of the Novi Sad wheat core collection revealed by microsatellites. Cell Mol Biol Lett 7:685–694

    CAS  PubMed  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Roder MS (2013) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423. doi:10.1007/s11032-013-9880-6

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289. doi:10.1007/s11032-004-7012-z

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF et al (2013) Catalogue of gene symbols for wheat in 12th International Wheat Genetics Symposium, edited by R.A. McIntosh, Yokohama, Japan. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdf. Accessed 23 Dec 2015

  • Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L, Holzapfel J, Korzun V, Ebmeyer E, Utz HF (2012) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742. doi:10.1007/s11032-011-9586-6

    Article  CAS  Google Scholar 

  • Miedaner T, Zha Y, Gowda M, Longin CFH, Korzun V, Ebmeyer E, Kazman E, Reif JC (2013) Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genom 14:858. doi:10.1186/1471-2164-14-858

    Article  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455. doi:10.1016/j.meegid.2014.01.011

    Article  PubMed  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58. doi:10.1007/s11032-010-9411-7

    Article  Google Scholar 

  • Quarrie SA, Dodig D, Pekic S, Kirby J, Kobiljski B (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bulg J Plant Physiol 28:83–95

    Google Scholar 

  • Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101:1209–1216. doi:10.1094/phyto-08-10-0203

    Article  CAS  PubMed  Google Scholar 

  • Rosielle AA, Brown AGP (1979) Inheritance, heritability and breeding behaviour of resistance to Septoria tritici in wheat. Euphytica 21:152–161

    Article  Google Scholar 

  • Simón MR, Cordo CA (1998) Diallel analysis of four resistance components to Septoria tritici in six crosses of wheat (Triticum aestivum). Plant Breed 117:123–126. doi:10.1111/j.1439-0523.1998.tb01464.x

    Article  Google Scholar 

  • Simón MR, Worland AJ, Struik PC (2004) Influence of plant height and heading date on the expression of the resistance to Septoria tritici blotch in near isogenic lines of wheat. Crop Sci 44:2078–2085. doi:10.2135/cropsci2004.2078

    Article  Google Scholar 

  • Simón MR, Perello AE, Cordo CA, Larran S, van der Putten PEL, Struik PC (2005) Association between Septoria tritici blotch, plant height, and heading date in wheat. Agron J 97:1072–1081. doi:10.2134/agronj2004.0126

    Article  Google Scholar 

  • Singh PK, Crossa J, Duveiller E, Singh RP, Djurle A (2015) Association mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set. Euphytica 206:1–11. doi:10.1007/s10681-015-1528-7

    Article  Google Scholar 

  • Suffert F, Sache I (2011) Relative importance of different types of inoculum to the establishment of Mycosphaerella graminicola in wheat crops in north-west Europe. Plant Pathol 60:878–889

    Article  Google Scholar 

  • Torriani SF, Brunner PC, McDonald BA, Sierotzki H (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65:155–162. doi:10.1002/ps.1662

    Article  CAS  PubMed  Google Scholar 

  • Van Beuningen LT, Kohli MM (1990) Deviation from the regression of infection on heading and height as a measure of resistance to Septoria tritici blotch in wheat. Plant Dis 74:488–493. doi:10.1094/pd-74-0488

    Article  Google Scholar 

  • Van Ginkel M, Scharen AL (1987) Generation mean analysis and heritabilities of resistance to Septoria tritici in durum wheat. Phytopathology 77:1629–1633. doi:10.1094/phyto-77-1629

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. doi:10.1038/ng1702

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. doi:10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124. doi:10.1007/s11032-009-9381-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by ANPCYT (Agencia Nacional de Promoción Científica y Tecnológica, Argentina) PICT 2181/2010. We wish to thank the staff from the J. Hirschhorn Experimental Station, Faculty of Agricultural and Forestry Sciences, National University of La Plata, Argentina. In addition, we thank Boris Kobiljski, Novi Sad, Serbia for developing and providing the original seed stocks. We also thank to the reviewers and editor for valuable comments and suggestions for improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Sebastián Gerard.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerard, G.S., Börner, A., Lohwasser, U. et al. Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their associations with plant height and heading date in wheat. Euphytica 213, 27 (2017). https://doi.org/10.1007/s10681-016-1820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1820-1

Keywords

Navigation