Skip to main content
Log in

Natural triploidy in phyto-oestrogen producing Curcuma species and cultivars from Thailand

Euphytica Aims and scope Submit manuscript

Abstract

Triploidy is relatively common in Curcuma, especially among vegetatively propagated species in cultivation. The aim of this study was to investigate the extent of triploidy and the level of genome size variation among commercially cultivated phyto-oestrogen producing Curcuma and related species in Thailand. Meiosis was also examined in order to validate the triploid status and to infer genomic relationship in the triploids. A total of 47 accessions belonging to C. comosa, C. latifolia, C. sp.‘elata-latifolia’, C. caesia, C. cf. zedoaroides, C. cf. zedoaria and Curcuma sp. 1 were differentiated by ploidy based on chromosome numbers and by genome size based on flow cytometry data. The results revealed three distinct groups: (1) diploid C. comosa cultivars with small rhizomes, having 2n = 42 and mean 2C DNA content of 1.690 pg; (2) triploid cultivars from all but one Curcuma species investigated, with 2n = 63 and mean 2C DNA content of 2.549 pg; and (3) tetraploid cultivars of C. latifolia and C. cf. zedoaria, with 2n = 84 and mean 2C DNA content of 3.439 pg. The mean triploid genome size is right between the diploid and tetraploid values. Only Curcuma caesia showed statistically significant difference in genome size from all other triploid taxa. The study of male meiosis revealed different meiotic figures. The triploid C. comosa is clearly an autotriploid as it showed 21 trivalents, whereas the diploid C. comosa showed 21 bivalents. This confirms the base number x = 21. Triploid cultivars of C. latifolia and C. sp. ‘elata-latifolia’ showed irregularities in their meiotic figures, thus indicating allotriploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anamthawat-Jónsson K (2012) Hybridisation, introgression and phylogeography of Icelandic birch. In: Anamthawat-Jónsson K (ed) Current topics in phylogenetics and phylogeography of terrestrial and aquatic systems. InTech, Rijeka, pp 117–144

    Chapter  Google Scholar 

  • Anamthawat-Jónsson K, Thórsson ÆTh, Temsch EM, Greilhuber J (2010) Icelandic birch polyploids—the case of a perfect fit in genome size. J Bot. doi:10.1155/2010/347254

    Google Scholar 

  • Apavatjrut P, Anuntalabhochai S, Sirirugsa P, Alisi C (1999) Molecular markers in the identification of some early flowering Curcuma L. (Zingiberaceae) species. Ann Bot London 84:529–534

    Article  CAS  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot London 107:467–590

    Article  CAS  Google Scholar 

  • Bhukhai K, Suksen K, Bhummaphan N, Janjorn K, Thongon N, Tanikanlayaporn D, Piyachaturawat P, Suksamrarn A, Chairoungdua A (2012) A phyto-oestrogen diarylheptanoid mediates estrogen receptor/Akt/glycogen synthase kinase 3 beta-Catenin signalling pathway. J Biol Chem 287:36168–36178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    CAS  PubMed  Google Scholar 

  • Chaveerach A, Sudmoon R, Tanee T, Mokkamul P, Sattayasai N, Sattayasai J (2008) Two new species of Curcuma (Zingiberaceae) used as cobra-bite antidotes. J Syst Evol 46:80–88

    Google Scholar 

  • Chen J, Xia N, Zhao J, Chen J, Henny R (2013) Chromosome numbers and ploidy levels of Chinese Curcuma species. Hortic Sci 48:525–530

    CAS  Google Scholar 

  • Dolezel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Eksomtramage L, Sirirugsa P, Jivanit P, Maknoi C (2002) Chromosome counts of some Zingiberaceae species from Thailand. Songklanakarin J Sci Technol 24:311–319

    Google Scholar 

  • Grandont L, Jenczewski E, Lloyd A (2013) Meiosis and its deviations in polyploidy plants. Cytogenet Genome Res 140:171–184

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350

    Article  CAS  PubMed  Google Scholar 

  • Intapad S, Saengsirisuwan V, Prasannarong M, Chuncharunee A, Suvitayawat W, Chokchaisiri R, Suksamrarn A, Piyachaturawat P (2012) Long-term effect of phyto-oestrogens from Curcuma comosa Roxb. on vascular relaxation in ovariectomized rats. J Agric Food Chem 60:758–764

    Article  CAS  PubMed  Google Scholar 

  • Islam MA (2004) Genetic diversity of the genus Curcuma in Bangladesh and further biotechnological approaches for in vitro regeneration and long-term conservation of C. longa germplasm. PhD Thesis, University of Hannover

  • Islam MA, Meister A, Schubert V, Kloppstech K, Esch E (2007) Genetic diversity and cytogenetic analysis in Curcuma zedoaria (Christm.) Roscue from Bangladesh. Genet Resour Crop Ev 54:149–156

    Article  Google Scholar 

  • Joseph R, Joseph T, Joseph J (1999) Karyomorphological studies in the genus Curcuma Linn. Cytologia 64:313–317

    Article  Google Scholar 

  • Keeratinijakal V, Kladmook M, Laosatit K (2010) Identification and characterization of Curcuma comosa Roxb., phyto-oestrogens producing plant, using AFLP markers and morphological characteristics. J Med Plant Res 4:2651–2657

    Google Scholar 

  • Khumkratok S, Boontiang K, Chutichudet P, Pramaul P (2012) Geographical distributions and ecology of ornamental Curcuma (Zingiberaceae) in Northeastern Thailand. Pak J Biol Sci 15:929–939

    Article  PubMed  Google Scholar 

  • Kun-Hua W, Jian-Hua M, He-Ping H, Shan-Lin G (2011) Generation of autotetraploid plant of ginger (Zingiber officinale Rosc.) and its quality evaluation. Phcog Mag 7:200–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Larsen K, Larsen SS (2006) Gingers of Thailand. Queen Sirikit Botanical Garden Organization, Ministry of Natural Resources and Environment, Chiang Mai, pp 76–85

    Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploidy plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leong-Skornickova J, Sida O, Jarolimova V, Sabu M, Fer T, Travnicek P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot London 100:505–526

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Maknoi C (2006) Taxonomy and phylogeny of the genus Curcuma L. (Zingiberaceae) with particular reference to its occurrence in Thailand. PhD Thesis, Prince of Songkla University

  • Nahar L, Sarker SD (2007) Phytochemistry of the genus Curcuma. In: Ravindran PN, Babu KN, Sivaraman K (eds) Turmeric: the genus Curcuma. CRC Press, Washington, pp 71–106

    Google Scholar 

  • Nair RR, Sasikumar B (2009) Chromosome number variation among germplasm collections and seedling progenies in turmeric Curcuma longa L. Cytologia 74:153–157

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology, vol 33. Academic Press, New York, pp 105–110

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Paisooksantivatana Y, Thepsen O (2001) Phenetic relationship of some Thai Curcuma species (Zingiberaceae) based on morphological, palynological and cytological evidence. Thai J Agric Sci 34:47–57

    Google Scholar 

  • Pimkaew P, Suksen K, Somkid K, Chokchaisiri R, Jariyawat S, Chuncharunee A, Suksamrarn A, Piyachaturawat P (2013) Zederone, a sesquiterpene from Curcuma elata Roxb, is hepatotoxic in mice. Int J Toxicol 32:454–462

    Article  CAS  PubMed  Google Scholar 

  • Piyachaturawat P, Ercharuporn S, Suksamrarn A (1995a) Uterotrophic effect of Curcuma comosa in rats. Int J Pharmacogn 33:334–338

    Article  Google Scholar 

  • Piyachaturawat P, Ercharuporn S, Suksamrarn A (1995b) Oestogenic activity of Curcuma comosa extract in rats. Asia Pac J Pharmacol 10:121–126

    Google Scholar 

  • Prana MS, Sastrapradja S, Hawkes JG, Lubis I (1978) A cytological study of some Indonesian Curcuma species. J Root Crop 4:31–35

    Google Scholar 

  • Raghava TS, Venkatasubban KR (1943) Cytological studies in the family Zingiberaceae with special reference to chromosome number and cyto-taxonomy. Proc Indian Acad Sci B 17:118–132

    Google Scholar 

  • Rai S, Das AB, Das P (1997) Estimation of 4C DNA and karyotype analysis in ginger (Zingiber officinale Rosc.) I. Cytologia 62:133–141

    Article  Google Scholar 

  • Ramachandran K (1961) Chromosome numbers in the genus Curcuma Linn. Curr Sci India 30:194–196

    Google Scholar 

  • Ramachandran K (1969) Chromosome numbers in Zingiberaceae. Cytologia 34:213–221

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Roscoe W (1828) Monandrain plants of the order Scitamineae with 112 handcol. plates. Liverpool, pl. 18

  • Roxburgh W (1820) Monandrian Monogynia. Flora Indica. Mission. Sarampore 1:20–37

    Google Scholar 

  • Saensouk S, Saensouk P (2004) Chromosome numbers of some Zingiberaceae in Thailand. KKU Res J 9:3–9

    Google Scholar 

  • Schumann K (1904) Das Pflanzenreich. Regni vegetabilis conspectus: IV. 46 Zingiberaceae, mit 355 Einzelbildern in 52 Figuren von K. Schumann. Leipzip, W. Engelmann, pp 99–115

  • Sharma AK, Sharma A (1980) Chromosome techniques: theory and practice, 3rd edn. Butterworth Press, London

    Google Scholar 

  • Sharma SK, Kumaria S, Tandon P, Rao SR (2011) Synaptic variation derived plausible cytogenetical basis of rarity and endangeredness of endemic Mantisia spathulata Schult. Nucleus 54:85–93

    Article  Google Scholar 

  • Sharma SK, Kumaria S, Tandon P, Rao SR (2012) Spectrum of chromosome associations in synaptic variants of Mantisia wengeri (Zingiberaceae)—an endemic, critically-endangered and probably inter-specific hybrid. Cytologia 77:385–392

    Article  Google Scholar 

  • Sirirugsa P (1999) Thai Zingiberaceae: Species diversity and their uses. URL: http://www.iupac.org/symposia/proceedings/phuket97/sirirugsa.html © 1999 IUPAC. Accessed 11 December 2013

  • Sirisawad T, Sirirugsa P, Suwanthada C, Apavatjrut P (2003) Investigation of chromosome numbers in 20 taxa of Curcuma. In: Chantaranothai P, Larsen K, Sirirugsa P, Simpson D (eds). In: Proceedings of the third Symposium on the family Zingiberaceae, pp 54–62

  • Soontornchainaksaeng P, Anamthawat-Jónsson K (2011) Ribosomal FISH mapping reveals hybridity in phyto-oestrogen producing Curcuma species from Thailand. Plant Syst Evol 292:41–49

    Article  Google Scholar 

  • Soontornchainaksaeng P, Jenjittikul T (2010) Chromosome number variation of phytoestrogen-producing Curcuma (Zingiberaceae) from Thailand. J Nat Med 64:370–377

    Article  PubMed  Google Scholar 

  • Soontornchainaksaeng P, Chantaranothai P, Senakun C (2003) Genetic diversity of Croton L. (Euphorbiaceae) in Thailand. Cytologia 68:379–382

    Article  Google Scholar 

  • Su J, Sripanidkulchai K, Wyss M, Sripanidkulchai B (2010) Curcuma comosa improves learning and memory function on ovariectomized rats in a long-term Morris water maze test. J Ethnopharmacol 130:70–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Suksamrarn A, Ponglikitmongkol M, Wongkrajang K, Chindaduang A, Kittidanairak S, Jankam A, Yingyongnarongkul B, Kittikanumat N, Chokchaisiri R, Khetkam P, Piyachaturawat P (2008) Diarylheptanoids, new phyto-oestrogens from the rhizomes of Curcuma comosa: isolation, chemical modification and oestogenic activity evaluation. Bioorgan Med Chem 16:6891–6902

    Article  CAS  Google Scholar 

  • Takano A, Okada H (2002) Multiple occurrence of triploid formation in Globba (Zingiberaceae) from molecular evidence. Plant Syst Evol 230:143–159

    Article  CAS  Google Scholar 

  • Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamran A, Piyachaturawat P (2013) Bone sparing effect of a novel phyto-oestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PLoS ONE 8:e78739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tayale A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weerachayaphorn J, Chuncharunee A, Mahagita C, Lewchalermwongse B, Suksamrarn A, Piyachaturawat P (2011) A protective effect of Curcuma comosa Roxb. On bone loss in estrogen deficient mice. J Ethnopharmacol 137:956–962

    Article  PubMed  Google Scholar 

  • Winuthayanon W, Piyachaturawat P, Suksamrarn A, Ponglikitmongkol M, Arao Y, Hewitt S, Korach KS (2009) Diarylheptanoid phyto-oestrogens isolated from the medicinal plant Curcuma comosa: biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms. Environ Health Persp 117:1155–1161

    Article  CAS  Google Scholar 

  • Zaveska E, Fer T, Sida O, Leong-Skornickova J, Sabu M, Marhold K (2011) Genetic diversity patterns in Curcuma reflects differences in genome size. Bot J Linn Soc 165:388–401

    Article  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Thailand, the Development and Promotion of Science and Technology Talents Project and the Faculty of Science, Mahidol University. Seeds of Solanum lycopersicum L.‘Stupické polní rané’ for use as internal standard were provided by the Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, the Czech Republic. We would like to thank Sirapope Wongniam, staff of the Central Instrument Facility of Mahidol University, for allowing us access to the flow cytometry facilities, Jatuporn Chandrmai for assistance with the chromosome preparation and Sigurdur H. Árnason for assistance with the language editorial. This study was funded by the National Research Council of Thailand: NRCT (Grant number 48/2552) and the Development and Promotion of Science and Technology Talents Project: DPST (Grant number 5408.1/4680). The Faculty of Science, Mahidol University (Grant number 0517.091/590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puangpaka Soontornchainaksaeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

The statement of Human and animal right informed consent

This research had not involved Human participants and/or Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puangpairote, T., Maknoi, C., Jenjittikul, T. et al. Natural triploidy in phyto-oestrogen producing Curcuma species and cultivars from Thailand. Euphytica 208, 47–61 (2016). https://doi.org/10.1007/s10681-015-1497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1497-x

Keywords

Navigation