Skip to main content

Advertisement

Log in

Breeding for biotic stress resistance in chickpea: progress and prospects

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) is the third most economically important food legume in the world. Its yield potential is often limited by various biotic stresses, including fungal and viral diseases, insects, nematodes and parasitic weeds. Incorporating genetic resistance into cultivars is the most effective and economical way of controlling biotic stresses and this is a major objective in many breeding programs. Extensive searches for resistances have been conducted by screening commercial varieties, landraces and closely related species. Resistances to disease such as Ascochyta blight and Fusarium wilt have been identified and molecular tools are being used to increase the efficiency of gene transfer from wild species into chickpea elite genotypes. Quantitative trait loci for resistance genes have been located on linkage maps and molecular markers associated with these loci can potentially be used for efficient pyramiding of the traits. Significant chickpea genomic resources have been developed in order to investigate resistance genes. Such resources include an integrated genetic map, expressed sequence tag libraries, bacterial artificial chromosome libraries, microarrays and draft genome sequences. Although these resources have yet to be used to improve chickpea cultivars in the field, this is likely to change in the near future. These genomic resources, as well as high-resolution phenotyping tools and cutting-edge technologies such as next-generation sequencing, promise to increase efficiency as work to identify valuable candidate genes continues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbo S, Redden RJ, Yadav SS (2007) Ch 16: utilisation of wild relatives. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 338–354

    Google Scholar 

  • Abraham AD, Menzel W, Lesemann D-E, Varrelmann M, Vetten HJ (2006) Chickpea chlorotic stunt virus: a new polerovirus infecting cool-season food legumes in Ethiopia. Phytopathology 96:437–446

    CAS  PubMed  Google Scholar 

  • Abraham AD, Menzel W, Varrelmann M, Vetten HJ (2009) Molecular, serological and biological variation among chickpea chlorotic stunt virus isolates from five countries of North Africa and West Asia. Arch Virol 154:791–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ, Moore A, Higgins TJV (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178(3):333–339

    CAS  Google Scholar 

  • Aftab M, Freeman A (2011) Temperate pulse viruses: Alfalfa mosaic virus Agnote No AG1206, Cucumber mosaic virus Agnote No AG1207, Bean leafroll virus Agnote No AG1252. Department of Environment and Primary Industries Victoria

  • Aftab M, Freeman A (2013) Temperate pulse viruses: Beet western yellows virus (BWYV). Department of Environment and Primary Industries (DEPI) Victoria Website Agnote No. AG1419

  • Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M (2012) Comparative analysis of Kabuli chickpea transcriptome with Desi and wild chickpea provided a rich resource for development of functional markers. PLoS ONE 7:e52443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aghakhani M, Dubey SC (2009) Determination of genetic diversity among Indian isolates of Rhizoctonia bataticola causing dry root rot of chickpea. Antonie Van Leeuwenhoek 96:607–619

    PubMed  Google Scholar 

  • Ahmad F (1999) Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theor Appl Genet 98:657–663

    CAS  Google Scholar 

  • Ahmad F, Slinkard AE (2004) The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genet Resour Crop Evol 51:765–772

    Google Scholar 

  • Ahmad GD, Hafez A, Ashaf M (1952) Association of morphological characters with blight resistance. In: Proceedings of 4th Pakistan science conference, pp 17–19

  • Ahmad F, Gaur PM, Croser J (2005) Chickpea (Cicer arietinum L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. Grain legumes, vol 1. CRC Press, Boca Raton, pp 187–217

    Google Scholar 

  • Akem C, Kabbabeh S (1999) Screening for resistance to Sclerotinia stem rot in chickpea: a simple technique. Pak J Biol Sci 2:277–279

    Google Scholar 

  • Ali M, Kumar S (2001) An overview of chickpea research in India. Indian J Pulse Res 14(2):81–89

    Google Scholar 

  • Ali MEK, Inanga S, Sugimoto Y (2002) Soursce of resistance to Fusarium wilt of chickpea in Sudan. Phytopathol Mediterr 41:163–169

    Google Scholar 

  • Ali H, Haq A, Shah T, Chen W (2012) Validation of molecular markers for resistance among Pakistani chickpea germplasm to races of Fusarium oxysporum f. sp. ciceris. Euro J Plant Pathol 132:237–244

    CAS  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM. Crops 2(2):104–109

    Google Scholar 

  • Ananda Rao PK, Haware MP (1987) Inheritance of dry root rot (Rhizoctonia bataticola) resistance in chickpea (Cicer arietinum). Plant Breed 98:349–352

    Google Scholar 

  • Anbessa Y, Taran B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 119:757–765

    CAS  PubMed  Google Scholar 

  • Ansari MA, Patel BA, Mhase NL, Patel DJ, Douaik A, Sharma SB (2004) Tolerance of chickpea (Cicer arietinum L.) lines to root-knot nematode, Meloidogyne javanica (Treub) Chitwood. Genet Resour Crop Evol 51(4):449–453

    Google Scholar 

  • Anuradha C, Gaur P, Pande S, Kishore G, Ganesh M, Kumar J, Varshney R (2011) Mapping QTL for resistance to Botrytis grey mould in chickpea. Euphytica 182(1):1–9

    CAS  Google Scholar 

  • Asaad N, Kumari SG, Haj-Kassem A, Shalaby AA, Al-Shaabi S, Malhotra RS (2009) Detection and characterization of chickpea chlorotic stunt in Syria. J Phytopathol 157:756–761

    CAS  Google Scholar 

  • Ashby JW (1984) Bean leaf roll virus. CMI/AAB Descriptions of Plant Viruses, no. 286

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-He´naut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    CAS  PubMed  Google Scholar 

  • Badami PS, Nallikarjuna N, Moss JP (1997) Interspecific hybridization between Cicer arietinum and C. pinnatifidum. Plant Breed 116:393–395

    Google Scholar 

  • Bakr MA, Ahmed F (1992) Botrytis gray mold of chickpea in Bangladesh. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. Summary proceedings of the BARI/ICRISAT Working Group meeting. ICRISAT, Patancheru, pp 10–12

    Google Scholar 

  • Bakr MA, Rahman ML, Ahmed AU (2002) Manifestation of Botrytis grey mould in chickpea in Bangladesh. In: Bakr MA, Siddique KHM, Johansen C (eds) Integrated management of Botrytis grey mould of chickpea in Bangladesh and Australia. Bangladesh Research Institute, Joydebour, pp 63–69

    Google Scholar 

  • Bayaa B, Udupa SM, Baum M, Malhotra RS, Kabbabeh S (2004) Pathogenic variability in Syrian isolates of Ascochyta rabiei. In: Proceedings of the 5th European conference of grain legumes and 2nd international conference on legume genomics and genetics, June 7–11, Dijon, France, p 306

  • Berger JD, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Google Scholar 

  • Bhardwaj R, Sandu JS, Kaur L, Gupta SK, Gaur PM, Varshney R (2010) Genetics of aschochyta blight resistance in chickpea. Euphytica 171:337–343

    Google Scholar 

  • Boland G, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Google Scholar 

  • Bos L, Hampton RO, Makkouk KM (1988) Viruses and virus diseases of pea, lentil faba bean and chickpea. In: Summerfield RJ (ed) World Crops: cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 591–615

    Google Scholar 

  • Brayford D (1998) Fusarium oxysporum f. sp. ciceris. IMI Descriptions of Fungi and Bacteria No. 1113

  • Bretag TW, Mebalds MI (1987) Pathogenicity of fungi isolated from Cicer arietinum (chickpea) grown in northwestern Victoria. Aust J Exp Agric 27:141–148

    Google Scholar 

  • Brinsmead RB, Rettke ML, Irwin JAG, Ryley MJ, Langdon PW (1985) Resistance in chickpea to Phytophthora megasperma f. sp. medicaginis. Plant Dis 69:504–506

    Google Scholar 

  • Bronner R, Westphal E, Dreger F (1991) Enhanced peroxidase activity associated with the hypersensitive response of Solanum dulcamara to the gall mite Aceria cladophthirus (Acari: Eriophyoidea). Can J Bot 69(10):2192–2196

    CAS  Google Scholar 

  • Brunt A, Crabtree K, Dallwitz M, Gibbs A, Watson L (1996) Viruses of plants: descriptions and lists from VIDE database. CAB International, Wallingford

    Google Scholar 

  • Butler DR (1993) How important is crop microclimate in chickpea Botrytis gray mold? In: Haware MP, Gowda CLL, McDonald D (eds) Recent advances in research on Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 7–9

    Google Scholar 

  • CABI (1983) Distribution maps of plant pests: Aphis craccivora. http://www.cabi.org/dmpp/?loadmodule=review&page=4049&reviewid=80108&site=164. Accessed 15 Nov 2011

  • CABI (2007) Crop Protection Compendium, 2007 Edition. CAB International, Wallingford (Online version). http://www.cabi.org/compendia/cpc/. Accessed May 2014

  • Cachinero JM, Hervas A, Jimenez-Diaz RM, Tena M (2002) Plant defence reactions against Fusarium wilt in chickpea induced by incompatible race 0 of Fusarium oxysporum f. sp. ciceri and non-host isolates of F. oxysporum. Plant Pathol 51:765–776

    Google Scholar 

  • Castillo P, Vovlas N, Jiménez-Díaz RM (1998) Pathogenicity and histopathology of Pratylenchus thornei populations on selected chickpea genotypes. Plant Pathol 47(3):370–376

    Google Scholar 

  • Castillo P, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2008) Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis 92(6):840–853

    Google Scholar 

  • Castro P, Piston F, Madrid E, Millan T, Gil J, Rubio J (2010) Development of chickpea near-isogenic lines for fusarium wilt. Theor Appl Genet 121:1519–1526

    CAS  PubMed  Google Scholar 

  • Caten CE (1987) The concept of race in plant pathology. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens: Their dynamics and genetics. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34(6):995–1002

    PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal H, Das S (2009) Tissue specific expression of potent insecticidal Allium sativum leaf agglutinin (ASAL) in important pulse crop chickpea (Cicer arietinum L) to resist the phloem feeding Aphis craccivora. Transgen Res 18(4):529–544

    CAS  Google Scholar 

  • Chalam TV, Reddy MV, Nene YL, Beniwal SPS, Subbayya J (1986) Some properties of a strain of Cucumber mosaic virus isolated from chickpea in India. Plant Dis 70:128–130

    Google Scholar 

  • Chang KF, Ahmed HU, Hwang SF, Gossen BD, Strellkov SE, Blade SF, Turnbull GD (2007) Sensitivity of field populations of Ascochyta rabiei to chlorothalonil, mancozeb and pyraclostrobin fungicides and effect of strobilurin fungicides on the progress of ascochyta blight of chickpea. Can J Plant Sci 87:937–944

    CAS  Google Scholar 

  • Chaturvedi R, Singh IS, Gupta AK (1995) Inheritance of resistance to Botrytis grey mould in chickpea (Cicer arietinum L.). Legume Res 18:1–4

    Google Scholar 

  • Chen W (2011) Dry root rot of chickpea. Compendium of chickpea and lentil diseases and pests, pp 15–16

  • Chen W, Coyne CJ, Peever TL, Muhlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769

    Google Scholar 

  • Chen W, Mcphee KE, Muehlbauer FJ (2005) Use of a mini-dome bioassay and grafting to study resistance of chickpea to ascochyta blight. J Phytopathol 153:579–587

    Google Scholar 

  • Chen W, Schatz B, Henson B, McPhee KE, Muehlbauer FJ (2006) First report of Sclerotinia stem rot of chickpea caused by Sclerotinia sclerotiorum in North Dakota and Washington. Plant Dis 90:114–114

    Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    PubMed  Google Scholar 

  • Choi HK, Luckow MA, Doyle J, Cook DR (2006) Development of nuclear gene-derived molecular markers linked to legume genetic maps. Mol Genet Gen 276:56–70

    CAS  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145(3):890–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chongo G, Gossen BD (2003) Diseases of Chickpea. In: Bailey KL, Gossen BD, Gugel R, Morrall RAA (eds) Diseases of field crops in Canada. Canadian Phytopathological Society, Saskatoon, pp 185–190

    Google Scholar 

  • Chongo G, Gossen BD, Buchwaldt L, Adhikari T, Rimmer SR (2004) Genetic diversity of Ascochyta rabiei in Canada. Plant Dis 88:4–10

    Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2006) Development of sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Mol Ecol Notes 6:3–95

    Google Scholar 

  • Chu PWG, Vetten HJ (2003) Subterranean clover stunt virus. AAB Descr Plant Viruses 396:16

    Google Scholar 

  • Cobos MJ, Fernandez MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millan T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    CAS  PubMed  Google Scholar 

  • Cobos M, Rubio J, Strange R, Moreno M, Gil J, Millan T (2006) A new QTL for Ascochyta blight resistance in a RIL population derived from an interspecific cross in chickpea. Euphytica 149:105–111

    Google Scholar 

  • Collard B, Ades P, Pang E, Brouwer J, Taylor P (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas Plant Pathol 30:271–276

    Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    CAS  PubMed  Google Scholar 

  • Coram T, Pang E (2005a) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    CAS  Google Scholar 

  • Coram T, Pang E (2005b) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66:201–210

    CAS  Google Scholar 

  • Coram T, Pang E (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666

    CAS  PubMed  Google Scholar 

  • Coram TE, Mantri NL, Ford R, Pang ECK (2007) Evans Review No. 4: functional genomics in chickpea: an emerging frontier for molecular-assisted breeding. Funct Plant Biol 34:861–873

    CAS  Google Scholar 

  • Cowgill SE, Lateef SS (1996) Identification of antibiotic and antixenotic resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. J Econ Entomol 89(1):224–229

    Google Scholar 

  • Cunnington J, Lindbeck K, Jones RH (2007) National Diagnostic Protocol for the detection of Fusarium Wilt of Chickpea (Fusarium oxysporum f. sp. ciceris. Developed and published by Plant Health Australia. http://www.planthealthaustralia.com.au/wp-content/uploads/2013/03/Fusarium-wilt-of-chickpea-DP-2007.pdf

  • Dale ML, Irwin JAG (1991a) Stomata as an infection court for Phytophthora megasperma f. sp. medicaginis in chickpea and a histological study of infection. Phytopathology 81:375–379

    Google Scholar 

  • Dale ML, Irwin JAG (1991b) Glasshouse and field screening of chickpea cultivars for resistance to Phytophthora megasperma f. sp. medicaginis. Aust J Exp Agric 31:663

    Google Scholar 

  • Davidson JA, Pande S, Bretag TW, Lindbeck KD, Kishore GK (2004) In: Elad Y, William B, Tudzynski P, Delen N (eds) Biology, pathology and control. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Deb AC, Khaleque MA (2009) Nature of gene action of some quantitative traits in Chickpea (Cicer arietinum L). World J Agric Sci 5(3):361–368

    Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Google Scholar 

  • Dey SK, Singh G (1993) Resistance to ascochyta blight in chickpea genetic basis. Euphytica 68:147–153

    Google Scholar 

  • Di Vito M, Greco N (1988) The relationship between initial population densities of Meloidogyne artiellia and yield of winter and spring chickpea. Nematol Mediterr 16:163–166

    Google Scholar 

  • Díaz-Franco A, Pérez-García P (1995) Control químico de la roya y la rabia del garbanzo y su influencia en el rendimiento de grano. Rev Mex Fitopatol 13:123–125

    Google Scholar 

  • Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant Microbe Interact 16:196–205

    CAS  PubMed  Google Scholar 

  • Douine L, Quiot JB, Marchoux G, Archange P (1979) Index of plants susceptible to Cucumber mosaic virus (CMV): bibliographical study. Ann Phytopathol 11:439–475

    Google Scholar 

  • Dua RP, Chaturvedi SK, Sewak Shiv (2001) Reference varieties of chickpea for IPR regime. Indian Institute of Pulses Research, Kanpur, p 34

    Google Scholar 

  • Duffus JE (1960) Radish yellows, a disease of radish, sugar beet and other crops. Phytopathology 50:389–394

    Google Scholar 

  • Edwardson JR, Christie RG (1991) CRC Handbook of viruses infecting Legumes. CRC Press, Boca Raton

    Google Scholar 

  • Edwardson JR, Christie RG (1997) Viruses infecting peppers and other Solanaceous crops. Monograph 18-1, vol 1. University of Florida Agricultural Experiment Station

  • El Bouhssini M, Mardini K, Malhotra RS, Joubi A, Kagka N (2008) Effects of planting date, varieties and insecticides on chickpea leaf miner (Liriomyza cicerina R.) infestation and the parasitoid Opius monilicornis F. Crop Prot 27(6):915–919

    Google Scholar 

  • Erler F, Ceylan F, Erdemir T, Toker C (2009) Preliminary results on evaluation of chickpea, Cicer arietinum, genotypes for resistance to the pulse beetle, Callosobruchus maculatus. J Insect Sci 9(58):1–7

    Google Scholar 

  • Eser D (1976) Heritability of some important plant characters, their relationships with plant yield and inheritance of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Ankara University, Faculty of Agriculture Publications No. 620, Ankara

  • Evans K, White P, Mangano P (2005) Insects pests of pulses. In: White P, Seymour M, Burgess P, Harries M (eds) Producing pulses in the southern agricultural region. Department of Agriculture, Perth, Western Australia, pp 104–111

  • Food and Agriculture Organization of the United Nations (2012) FAO statistics. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003a) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    CAS  PubMed  Google Scholar 

  • Flandez-Galvez H, Ades R, Ford R, Pang E, Taylor P (2003b) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265

    CAS  PubMed  Google Scholar 

  • Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer arietinum L. Plant Cell Rep 12:194–198

    CAS  PubMed  Google Scholar 

  • Fournier E, Giraud T, Loiseau A, Vautrin D, Estoup A, Solignac M, Cornuet JM, Brygoo Y (2002) Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Mol Ecol Notes 2:253–255

    CAS  Google Scholar 

  • France RA, Abawi GS (1994) Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on selected bean genotypes. J Nematol 26(4):467–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franz A, Makkouk KM, Katul L, Vetten HJ (1996) Monoclonal antibodies for the detection and differentiation of Faba bean necrotic yellows virus isolates. Ann Appl Biol 128:255–268

    Google Scholar 

  • Fuhlbohm MJ, Tatnell JR, Ryley MJ (2003) First report of stem rot and wilt of chickpea caused by Sclerotinia minor in Queensland, Australia. Aust Plant Pathol 32:323–324

    Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaur PM, Pande S, Upadhyaya HD, Rao BV (2006) Extra-large Kabuli chickpea with high resistance to Fusarium wilt. SAT eJ 2(1):1–2. http://www.ejournal.icrisat.org

  • Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S (2011) Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genom 12:117

    CAS  Google Scholar 

  • Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19(5):357–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gil J, Nadal S, Luna D, Moreno M, de Haro A (1996) Variability of some physicochemical characters in Desi and Kabuli chickpea types. J Sci Food Agric 71:179–184

    CAS  Google Scholar 

  • Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183

    CAS  Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988) Effect of Heterodera ciceri on yield of chickpea and lentil and development of this nematode on chickpea in Syria. Nematologica 34(1):98–114

    Google Scholar 

  • Greco N, Di Vito M, Malhotra RS, Saxena MC, Zaccheo G, Catalano F, Hajjar S (2003) Effect of population densities of Heterodera ciceri on new resistant lines of chickpea. Nematol Mediterr 31(2):173–180

    Google Scholar 

  • Grewal JS, Pal M, Rewal N (1992) Botrytis gray mold of chickpea in India. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 6–8

    Google Scholar 

  • Guarino L (ed) Global Diversity Trust Rome (2008) global strategy for the ex situ conservation of chickpea (Cicer arietinum L.), p 55. http://www.croptrust.org/documents/web/CicerStrategy_FINAL_2Dec08.pdf. Accessed 24 July 2014

  • Gumber RK, Kumar J, Haware MP (1995) Inheritance of resistance to fusarium wilt in chickpea. Plant Breed 114:277–279

    Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant breeding reviews. Wiley, New York, pp 145–217

    Google Scholar 

  • Gurha SN, Singh G, Sharma YR (2003) Diseases of chickpea and their management. In: Ali M, Kumar S, Singh NB (eds) Chickpea research in India. Army Printing Press, Lucknow, pp 195–227

    Google Scholar 

  • Hafiz A, Ashraf M (1953) Studies on inheritance of resistance to Mycosphaerella blight in gram. Phytopathology 43:580–581

    Google Scholar 

  • Halila MH, Strange RN (1996) Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceris race 0. Phytopathol Mediterr 35:67–74

    Google Scholar 

  • Halila MH, Strange RN (1997) Screening of Kabuli chickpea germplasm for resistance to Fusarium wilt. Euphytica 96:273–279

    Google Scholar 

  • Haware MP (1990) Fusarium wilt and other important diseases of chickpea in the Mediterranean area. Opt Méditerr Sér Sémin 9:61–64

    Google Scholar 

  • Haware MP (1998) Diseases of chickpea. In: Allen DJ, Lenne JM (eds) The pathology of food and pasture legumes. ICARDA. CAB International, Wallingford, pp 473–516

    Google Scholar 

  • Haware MP, McDonald D (1992) Integrated management of Botrytis gray mold of chickpea. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 3–6

    Google Scholar 

  • Haware MP, McDonald D (1993) Botrytis gray mold of chickpea. In: Haware MP, Gowda CLL, McDonald D (eds) Recent advances in research on Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 3–6

    Google Scholar 

  • Haware MP, Nene YL (1982) Screening chickpea for resistance to Botrytis gray mold. Int Chick News 6:17–18

    Google Scholar 

  • Haware MP, Nene YL, Mathur SB (1986) Seed-borne diseases of chickpea. Technical Bulletin, Danish Government Institute of Seed Pathology for Developing Countries

  • Haware MP, Narayana JR, Pundir RPS (1992) Evaluation of wild Cicer species for resistance to four chickpea diseases. Int Chick News 27:16–18

    Google Scholar 

  • Haware MP, Tripathi HS, Rathi YPS, Lenne JM, Janthi S (1997) Integrated management of Botrytis gray mold of chickpea: cultural, chemical, biological and resistance options. In: Haware MP, Lenne JM, Gowda CLL (eds) Recent advances in research on Botrytis Gray mold of chickpea. ICRISAT, Patancheru, pp 9–12

  • Hawthorne W, Davidson J, McMurray L, Hobson K, Lindbeck K, Brand J (2012) Chickpea disease management strategy (southern region). Southern pulse bulletin, PA 2012#8

  • Hernández Fernández V, Martín Barbarroja J, Jiménez Díaz RM, Castillo P (2005) Reproductive fitness of Meloidogyne artiellia populations on chickpea and durum wheat. Nematology 7(2):243–247

    Google Scholar 

  • Hilton SA (2000) Canadian plant disease survey. Agriculture and Agri-Food Canada 80:1–151. http://www.cps-scp.ca/download/cpds_v80.pdf. Accessed 5 May 2014

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollaway G, Freeman A, McLean M, Richardson H, Henry F, Aftab M, Spackmann M, Marcroft S, Elliott V, Rodda M, Li H, McQueen V, Kant P (2012) Identification and management of field crop diseases in Victoria. Department of Primary Industries, Melbourne. ISBN 978-1-74217-752-6 (print). http://www.croppro.com.au/crop_disease_manual.php

  • Horn NM, Reddy SV, Roberts IM, Reddy DVR (1993) Chickpea chlorotic dwarf virus, a new leafhopper- transmitted Geminivirus of chickpea in India. Ann Appl Biol 122:467–479

    Google Scholar 

  • Horn NM, Reddy SV, Reddy DVR (1995) Assessment of yield losses caused by chickpea chlorotic dwarf geminivirus in chickpea (Cicer arietinum L.) in India. Eur J Plant Pathol 101:221–224

    Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    PubMed  Google Scholar 

  • ICARDA (1998) Germplasm program: legumes annual report for 1998. ICARDA, Aleppo

    Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millan T, Gil J (2007) Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37

    Google Scholar 

  • Irwin JAG, Dale JL (1982) Relationships between Phytophthora megasperma isolates from chickpea, lucerne and soybean. Aust J Bot 30:199–210

    Google Scholar 

  • Isenegger DA, MacLeod WJ, Ford R, Pande S, Abu Bakr M, Taylor PWJ (2005) Genetic structure of Botrytis cinerea that causes Botrytis grey mould disease of chickpea in Bangladesh. In: Innovations for sustainable plant health—15th Australian Plant Pathological Society handbook, p 224

  • Isenegger DA, Macleod WJ, Ford R, Taylor PWJ (2008) Genotypic diversity and migration of clonal lineages of Botrytis cinerea from chickpea fields of Bangladesh inferred by microsatellite markers. Plant Pathol 57:967–973

    Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74(5):715–729

    CAS  PubMed  Google Scholar 

  • Jalali BL, Chand H (1992) Chickpea wilt. In: Singh US, Mukhopadhayay AN, Kumar J, Chaube HS (eds) Plant diseases of international importance. Diseases of cereals and pulses, vol 1. Prentice Hall, Englewood Cliffs, pp 429–444

    Google Scholar 

  • Jamil FF, Sarwar N, Sarwar M, Khan JA, Geistlinger J, Kahl G (2000) Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 57:243–254

    CAS  Google Scholar 

  • Jandhyala P (2005) ICRISAT plans to start open field trials for transgenic groundnut. In: Business standard. http://www.seedquest.com/News/releases/2005/February/11365.htm. Accessed 5 July 2014

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10(6):690–702

    CAS  PubMed  Google Scholar 

  • Jones DR (1983) Chickpea rust—a disease new to Australia. Queensland Dep of Primary Industry Farm Note AGDEX 168/637

  • Kalo A, Seres A, Taylor SA, Jaka J, Kevei ZA, Kereszt GE, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Gen 272:235–246

    CAS  Google Scholar 

  • Kanouni H, Taleei A, Peyghambari SA, Okhovat SM, Baum M, Abang M (2009) QTL analysis for ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. J Agric Res 25:109–127

    Google Scholar 

  • Kanouni H, Taleei A, Okhovat M (2011) Aschochyta blight (Aschochyta rabei (Pass.) Lab.) of chickpea (Cicer arietinum L). Strategies for resistance. Int J Plant Breed Genet 5:1–22

    Google Scholar 

  • Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of Chickpea (Cicer arietinum L). Plant Cell Rep 16:32–37

    CAS  PubMed  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae. Transgen Res 6:177–185

    CAS  Google Scholar 

  • Katul L (1992) Characterization by serology and molecular biology of Bean leafroll virus and Faba bean necrotic yellows virus. PhD Thesis, University of Gottingen, Germany

  • Katul L, Vetten HJ, Maiss E, Makkouk KM, Lesemann DE, Caster R (1993) Characterisation and serology of virus-like particles associated with Faba bean necrotic yellows. Ann Appl Biol 123:629–647

    Google Scholar 

  • Kazan K, Muehlbauer FJ, Weeden NF, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426

    CAS  PubMed  Google Scholar 

  • Khan MR, Ashraf S, Shahid S, Anwer MA (2010) Response of some chickpea cultivars to foliar, seed and soil inoculations with Botrytis cinerea. Phytopathol Mediterr 49:275–286

    Google Scholar 

  • Kharrat M, Halila MH, Linke KH, Haddar T (1992) First report of Orobanche foetida Poiret on faba bean in Tunisia. Fabis Newsl 30:46–47

  • Kishore GK (2005) Cultural, morphological, pathogenic and genetic variation in Botrytis cinerea, causal agent of gray mold in chickpea. PhD Thesis, Jawaharlal Nehru Technological University, Hyderabad

  • Knights EJ, Southwell RJ, Schwinghamer MW (2003) Evaluation of wild Cicer species for resistance to phytophthora root rot. In: Sharma RN, Shrivastava GK, Rathore AL, Sharma ML, Khan MA (eds) Chickpea research for the millennium; proceedings of the international chickpea conference. Indira Gandhi Agricultural University, Raipur, p 54

    Google Scholar 

  • Knights EJ, Southwell RJ, Schwinghamer MW, Harden S (2008) Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Aust J Agric Res 59:383–387

    Google Scholar 

  • Koebner R, Summers R (2007) Marker-assisted selection in wheat: evolution, not revolution. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie J (eds) Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations, Rome, pp 51–58

  • Kolesík P, Pastucha L (1992) Chickpea leafminer Liriomyza cicerina (Rondani, 1875) [Diptera, Agromyzidae] - a new species of Czecho-Slovak fauna. Biológia (Bratislava) 47:439–440

    Google Scholar 

  • Kraft JM, Haware MP, Jimenez-Diaz RM, Bayaa B, Harrab M (1994) Screening techniques and sources of resistance to root rots and wilt in cool season food legumes. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legums. Kluwer Academic Publishers, Dordrecht, pp 268–289

    Google Scholar 

  • Krishnamurthy KV, Suhasani K, Sagare AP, Meixner M, de Kathen A, Pickardt T, Schieder O (2000) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19:235–240

    CAS  Google Scholar 

  • Kumar S (1998) Inheritance of resistance to Fusarium wilt (race 2) in chickpea. Plant Breed 117:139–142

    Google Scholar 

  • Kumar J, Yadav SS, Kumar R, Hegde V, Singh AK, Singh N (2005) Evaluation of chickpea (Cicer arietinum L.) germplasm for stunt virus and phonological traits. In: Abstract of 4th international food legume research conference, pp 18–22

  • Kumar PL, Kumari SG, Waliyar F (2008) Virus diseases of chickpea. In: Rao GP, Kumar PL, Penna RJH (eds) Characterization, diagnosis and management of plant viruses, vol 3., Vegetable and Pulse Crops Studium Press LLC, Texas, pp 213–234

    Google Scholar 

  • Kumari SG, Makkouk KM, Attar N, Ghulam W, Lesemann DE (2004) First report of Chickpea chlorotic dwarf virus infecting spring chickpea in Syria. Plant Dis 88:424

    Google Scholar 

  • Kusmenoglu I (1990) Ascochyta blight of chickpea: inheritance and relationship to seed size, morphological traits and isozyme variation. MSc Thesis, Washington State University

  • Ladizinsky G, Adler A (1976) Genetic relationships among the annual species of Cicer L. Theor Appl Genet 48:197–203

    CAS  PubMed  Google Scholar 

  • Laha SK, Khatua DC (1988) Sources of resistance against gray mold and stemphylium blight of gram. Environ Ecol 6(3):656–659

    Google Scholar 

  • Landa BB, Navas-Cortes JA, del mar Jiminez-Gasco M, Katan J, Retig B, Jimenez-Diaz RM (2006) Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of fusarium wilt. Plant Dis 90:365–374

    Google Scholar 

  • Larsen RC, Miklas PN (2001) Effect of Red clover vein mosaic carlavirus infection on seed production and biomass yield in chickpea. Phytopathology 91(6 Supplement):S45

    Google Scholar 

  • Larsen RC, Porter LD (2010) Identification of novel sources of resistance to Pea enation mosaic virus in chickpea germplasm. Plant Pathol 59:42–47

    CAS  Google Scholar 

  • Lateef SS (1985) Gram pod borer (Heliothis armigera) (Hub.) resistance in chickpeas. Agric Ecosyst Environ 14(1–2):95–102

    Google Scholar 

  • Lawo NC, Mahon RJ, Milner RJ, Sarmah BK, Higgins TJV, Romeis J (2008) Effectiveness of Bt chickpeas and the entomopathogenic fungus Metarhizium anisopliae to control Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 74(14):4381–4389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing Asia, Richmond

    Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea (Cicer arietinum L.). Theor Appl Genet 110:492–510

    CAS  PubMed  Google Scholar 

  • Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113:1357–1369

    PubMed  Google Scholar 

  • MacLeod B, Vanstone V, Jones R, Galloway J (2005) Producing pulses in the northern agricultural region—diseases of pulses. Bulletin 4656, Western Australian Government

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millán T, Gil J, Rubio J (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121:43–53

    CAS  Google Scholar 

  • Madrid E, Chen W, Rajesh PN, Castro P, Millan T, Gil J (2013) Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica 189:183–190

    CAS  Google Scholar 

  • Maheshwari TU, Sharma SB, Reddy DD, Haware MP (1995) Co-infection of wilt-resistant chickpeas by Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica. J Nematol 27(4S):649–653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahon RJ, Olsen KM, Garsia KA, Young SR (2007) Resistance to Bacillus thuringiensis toxin Cry2aB in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J Econ Entomol 100:894–902

    CAS  PubMed  Google Scholar 

  • Malhotra RS, Singh KB, Di Vito M, Greco N, Saxena MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42(5):1756

    Google Scholar 

  • Mallikarjuna N (1999) Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110:1–6

    Google Scholar 

  • Markell S, Wise K, McKay K, Goswami R, Gudmestad N (2008) Plant disease management. NDSU Extension Service. North Dakota State University, Fargo

  • Martinez M (2007) Agromyzidae. In: Page T (ed) Fauna Europaea: Diptera: Brachycera. Fauna Europaea version 1.3. Fauna Europaea, Amsterdam http://www.faunaeur.org. Accessed 3 July 2014

  • Matheron ME, Porchas M (2000) First report of stem and crown rot of garbanzo caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona. Plant Dis 84:1250

    Google Scholar 

  • Matthews P, McCaffery D, Jenkins L (2014) Winter crop variety sowing guide 2014. Department of Primary Industries, NSW Government

  • Mayer MS, Tullu A, Simon CJ, Kumar J, Kaiser WJ, Kramer JM, Kraft JM, Muehlbauer FJ (1997) Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci 37:1625–1629

    CAS  Google Scholar 

  • Mehrotra M, Sanyal I, Amla DV (2011a) High-efficiency Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Rep 30:1603–1616

    CAS  PubMed  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011b) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    CAS  Google Scholar 

  • Millán T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147:81–103

    Google Scholar 

  • Millán T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos M, Iruela M, Rajesh P, Tekeoglu M, Kahl G, Muehlbauer F (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Montes MJ, Lopez-Brana I, Delibes A (2004) Root enzyme activities associated with resistance to Heterodera avenae conferred by gene Cre7 in a wheat/Aegilops triuncialis introgression line. J Plant Physiol 161(4):493–495

    CAS  PubMed  Google Scholar 

  • Moore K, Ryley M, Schwinghamer M, Cumming G, Jenkins L (2011) Chickpea: Phytophthora root rot management. Northern Pulse Bulletin. PA 2011#11

  • Moore K, Kelly L, Ryley M, Hobson K, Knights T, Harden S, Martin W, King K, Nash P, Chiplin G, Bithell S (2015) Phytophthora in chickpea varieties - resistance rankings and yield loss. GRDC updated papers. http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/02/Phytophthora-in-chickpea-varieties-resistance-rankings-and-yield-loss

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998a) Registration of ‘Sanford’ Chickpea. Crop Sci 38:282

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998b) Registration of ‘Dwelley’ Chickpea. Crop Sci 38:282–283

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998c) Registration of ‘Myles’ Chickpea. Crop Sci 38:283

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Naresh J, Malik V (1989) Observations on the insect pests of chickpea (Cicer arietinum L.) in Haryana. Bullet Entomol New Delhi 27:75–77

    Google Scholar 

  • Nayak S, Zhu H, Varghese N, Datta S, Choi H-K, Horres R, Jüngling R, Singh J, Kavi Kishor P, Sivaramakrishnan S, Hoisington D, Kahl G, Winter P, Cook D, Varshney R (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64:379–380

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh RS (eds) The Chickpea. CAB International, Wallingford, pp 233–270

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS (1991) Field diagnosis of chickpea disease and their control. Information Bulletin No 28, ICRISAT, Andhra Pradesh

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS, Pande S, Sharma M (2012) Field diagnosis of chickpea diseases and their control. Information bulletin No. 28 (revised). International Crops Research Institute for the Semi-arid Tropics, Patancheru, p 60

  • Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2004) Genetic diversity in Cicer using AFLP analysis. Plant Breed 123:173–179

    CAS  Google Scholar 

  • Nimbalkar S, Harsulkar A, Giri A, Sainani M, Franceschi V, Gupta V (2006) Differentially expressed gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection. Physio Mol Plant Pathol 68:176–188

    CAS  Google Scholar 

  • Njambere EN, Chen W, Frate C, Wu B-M, Temple SR, Muehlbauer FJ (2008) Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Dis 92:917–922

    CAS  Google Scholar 

  • Oliveira JTA, Andrade NC, Martins-Miranda AS, Soares AA, Gondim DMF, Araj-Filho JH, Freire-Filho FR, Vasconcelos IM (2012) Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol Biochem 51:145–152

    CAS  PubMed  Google Scholar 

  • Pande S, Singh G, Rao JN, Bakr MA, Chaurasia PCP, Joshi S, Johansen C, Singh SD, Kumar J, Rahman MM, Gowda CLL (2002) Integrated management of Botrytis gray mold of chickpea. Information Bulletin No. 61, ICRISAT, Andhra Pradesh, India

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res 56:317–332

    Google Scholar 

  • Pande S, Krishna Kishore G, Upadhyaya HD, Narayana Rao J (2006a) Identification of sources of multiple disease resistance in mini-core collection of chickpea. Plant Dis 90:1214–1218

    Google Scholar 

  • Pande S, Ramgopal D, Kishore GK, Mallikarjuna N, Sharma M, Pathak M, Narayana Rao J (2006b) Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis grey mold in controlled environment at ICRISAT, Patancheru, India. J Sat Agric Res 2(1):1–3

    Google Scholar 

  • Pande S, Sharma M, Gaur PM and Gowda CLL (2010) Host Plant Resistance to Ascochyta Blight of Chickpea. Information Bulletin No 82. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 40 

  • Peever TL, Chen W, Abdo Z, Kaiser WJ (2012) Genetics of virulence in Ascochyta rabiei. Plant Pathol 61:754–760

    Google Scholar 

  • Pérez-De-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J, Yoneyama K, Takeuchi Y, Plakhine D, Joel DM (2005) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95(6):935–942

    PubMed Central  PubMed  Google Scholar 

  • Pérez-De-Luque A, Fondevilla S, Pérez-Vich B, Aly R, Thoiron S, Simier P, Castillejo MA, Fernández-Martinez JM, Jorrín J, Rubiales D, Delavault P (2009) Understanding Orobanche and Phelipanche–host plant interactions and developing resistance. Weed Res 49:8–22

    Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167(2):195–206

    CAS  Google Scholar 

  • Porta-Puglia A, Aragona M (1997) Improvement of grain legumes general part: diseases. Field Crop Res 53:17–30

    Google Scholar 

  • Porta-Puglia A, Crino P, Mosconi C (1996) Variability in virulence to chickpea of an Italian population of Ascochyta rabiei. Plant Dis 80:39–41

    Google Scholar 

  • Price WC (1934) Isolation and study of some yellow strains of cucumber mosaic. Phytopathology 24:743–761

    Google Scholar 

  • Pundir RPS, Reddy KN, Mengesha MH (1988) ICRISAT germplasm catalogue: evaluation and analysis. ICRISAT, Patancheru

    Google Scholar 

  • Qureshi SH, Alam SS (1984) Pathogenic behavior of Ascochyta rabiei isolates on different cultivars of chickpea in Pakistan. Int Chick News 10:29–31

    Google Scholar 

  • Ragagnin VA, Souza TLPO, Sanglard DA, Arruda KMA, Costa MR, Alzate-Marin AL, Carneiro JES, Moreira MA, Barros EG (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163

    Google Scholar 

  • Ragazzi A (1982) Un grave attacco di ruggine su foglie di cese. (A serious attack of rust on Cicer arietinum leaves). Inform Fitopatol 2:41–43

    Google Scholar 

  • Ragot M, Lee M (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie J (eds) Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations, Rome, pp 117–150

  • Rajesh PN, Coyne C, Meksem K, DerSharma K, Gupta V, Muehlbauer FJ (2004) Construction of a Hind III bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    CAS  PubMed  Google Scholar 

  • Rajesh P, Darlow M, Till B, Muehlbauer F (2007a) Estimation of mutation frequency in chickpea genome using TILLING. In: Lazo G, Grant D, Blake V (eds) Plant and animal genome XV conference, San Diego, p 47

  • Rajesh P, O’Bleness M, Main D, Roe B, Muehlbauer F (2007b) Analysis of genome organization and composition using 500 Kb BAC sequences in chickpea. In: Lazo G, Grant D, Blake V (eds) Plant and animal genome XV conference, San Diego

  • Rao VK, Krishnappa K (1995) Integrated management of Meloidogyne incognita-Fusarium oxysporum f. sp. ciceri wilt disease complex in chickpea. Int J Pest Manag 41(4):234–237

    Google Scholar 

  • Ratnaparkhe MB, Santra DK, Tullu A, Muehlbauer FJ (1998) Inheritance of inter-simple sequence-repeat polymorphisms and linkage with a Fusarium wilt resistance gene in chickpea. Theor Appl Genet 96:348–353

    CAS  PubMed  Google Scholar 

  • Redden RJ, Berger JD (2007) History and origin of chickpea. In: Yadav SS, Redden R, Chen W and Sharma B (eds) Chickpea Breeding & Management, Chap 1. CAB International, Wallingford, pp 1–13

  • Reddy MV, Kabbabeh S (1985) Pathogenic variability in Ascochyta rabiei (Pass.) Labr. in Syria and Lebanon. Phytopathol Mediterr 24:265–266

    Google Scholar 

  • Reddy MV, Singh KB (1984) Evaluation of a world collection of chickpea germplasm lines for resistance to ascochyta blight. Plant Dis 68:900–901

    Google Scholar 

  • Reddy MV, Singh KB (1992) Registration of five chickpea germplasm lines resistant to ascochyta blight. Crop Sci 32:1079–1080

    Google Scholar 

  • Reddy MV, Singh O, Bharati MP, Sah RP, Joshi S (1988) Botrytis grey mold epiphytotic of chickpea in Nepal. Int Chick News 19:15

    Google Scholar 

  • Reed W, Cardona C, Sithanantham S, Lateff SS (1987) The chickpea pest insect and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 283–318

    Google Scholar 

  • Reuveni R, Ferreira JF (1985) The relationship between peroxidase activity and the resistance of tomatoes (Lycopersicum esculentum) to Verticillium dahliae. J Phytopathol 112(3):193–197

    CAS  Google Scholar 

  • Rewal N, Grewal JS (1989a) Effect of temperature, light and relative humidity on conidial germination of three strains of Botrytis cinerea infecting chickpea. Int Phytopathol 42:79–83

    Google Scholar 

  • Rewal N, Grewal JS (1989b) Differential response of chickpea to grey mould. Indian Phytopathol 42(2):265–268

    Google Scholar 

  • Rewal N, Grewal JS (1989c) Inheritance of resistance to Botrytis cinerea Pers. Cicer arietinum. Euphytica 44: 61–63

  • Rubiales D, Fondevilla S (2010) Resistance of cool season food legumes to Aschochyta blight. Field Veg Crop Res 47:439–442

    Google Scholar 

  • Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubiales D, Moreno I, Moreno MT, Sillero JC (2001) Identification of partial resistance to chickpea rust (Uromyces ciceris-arietini). In: Proceedings of the 4th European conference on grain legumes, Cracow, pp 194–195

  • Rubiales D, Pérez-de-Luque A, Joel DM, Alcántara C, Sillero JC (2003) Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Sci 51(5):702–707

    CAS  Google Scholar 

  • Rubiales D, Alcántara C, Sillero JC (2004) Variation in resistance to Orobanche crenata in species of Cicer. Weed Res 44(1):27–32

    Google Scholar 

  • Rubiales D, Castillejo MA, Madrid E, Barilli E, Rispail N (2011) Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula. Euphytica 180:89–98

    Google Scholar 

  • Rubio J, Moussa E, Kharrat M, Moreno MT, Millan NT, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122:188–191

    CAS  Google Scholar 

  • Rubio J, Moreno MT, Moral A, Rubiales D, Gil J (2006) Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci 46:2331–2332

    Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshneyet RK (2003) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133

    Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40:1606–1612

    CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168(4):1135–1146

    CAS  Google Scholar 

  • Saxena NP (1990) Status of chickpea in the Mediterranean basin. In: Sexana MC, Cubro JI, Wery J (eds) Present status and future prospects of chickpea crop production and improvement in the Mediterranean countries. Options Méditerraneennes, (CIHEAM) Series A No. 9, pp 17–24

  • Schwinghamer MW, Johnstone GR, Lord-Johnston CF (1999) First report of Bean leafroll virus Luteovirus in Australia. Aust Plant Pathol 28:260–267

    Google Scholar 

  • Senthil G, Williamson B, Dinkins R, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303

    CAS  PubMed  Google Scholar 

  • Sequeira RV, McDonald JL, Moore AD, Wright GA, Wright LC (2001) Host plant selection by Helicoverpa spp in chickpea-companion cropping systems. Entomol Exp Appl 101(1):1–7

    Google Scholar 

  • Sethy NK, Shokeen B, Bhatia S (2003) Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Mol Ecol Notes 3:428–430

    CAS  Google Scholar 

  • Sethy NK, Choudhary S, Shokeen B, Bhatia S (2006a) Identification of microsatellite markers from Cicer reticulatum: molecular variation and phylogenetic analysis. Theor Appl Genet 112:347–357

    CAS  PubMed  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006b) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    CAS  PubMed  Google Scholar 

  • Sharma HC (2006) Integrated pest management at ICRISAT: present status and future priorities. International Crops Research Institute for the semi-Arid Tropics, Patancheru, p 48

  • Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14

    CAS  Google Scholar 

  • Sharma SB, Singh O, Pundir RPS, McDonald D (1993) Screening of Cicer species and chickpea genotypes for resistance to Meloidogyne javanica. Nematol Mediterr 21(2):165–167

    Google Scholar 

  • Sharma KD, Winter P, Kah G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248

    CAS  PubMed  Google Scholar 

  • Sharma HC, Pampapathy G, Lanka S, Ridsdill-Smith T (2005a) Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142(1):107–117

    Google Scholar 

  • Sharma HC, Pampapathy G, Kumar R (2005b) Standardization of cage techniques to screen chickpeas for resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in greenhouse and field conditions. J Econ Entomol 98(1):210–216

    CAS  PubMed  Google Scholar 

  • Sharma HC, Bhagwat M, Pampapathy G, Sharma J, Ridsdill-Smith T (2006) Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Resour Crop Evol 53(1):131–138

    Google Scholar 

  • Sharma HC, Gowda CL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Ranga Rao GV, Romies J, Miles M, Bouhssini M (2007) Host plant resistance and insect pest management in chickpea. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 520–537

    Google Scholar 

  • Sharman M, Wilson C, Thomas J (2012) A distinct polerovirus infecting crop and weed legumes from eastern Australia is transmitted by cowpea aphid (Abstract). In: 10th Australian plant virology workshop, Hanmer Springs, New Zealand, 19–22 November 2012, p 28

  • Siddiqui ZA, Husain SI (1991) Interaction of Meloidogyne incognita race 3 and Macrophomina phaseolina in root-rot disease complex of chickpea. Nematol Mediterr 19:237–239

    Google Scholar 

  • Siddiqui ZA, Husain SI (1992) Response of twenty chickpea cultivars to Meloidogyne incognita race 3. Nematol Mediterr 20(1):33–36

    Google Scholar 

  • Sikora RA, Greco N, Silva JFV (2005) Nematode parasites of food legumes. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. Oxfordshire, GBR, CABI Publishing, Wallingford, pp 259–318

    Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147(1–2):255–272

    Google Scholar 

  • Sillero JC, Moreno-Alias I, Rubiales D (2012) Identification and characterization of resistance to rust (Uromyces ciceris-arietini (Grognot) Jacz. & Boyd) in a germplasm collection of Cicer spp. Euphytica 188(2):229–238

    CAS  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  • Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crops Res 53:161–170

    Google Scholar 

  • Singh G, Bhan LK (1986) Physiological races of Botrytis cinerea causing grey mould of chickpea. Plant Dis Res 1:69–74

    Google Scholar 

  • Singh G, Kaur L (1989) Genetic variability studies and scope for improvement in chickpea, Punjab, India. Int Chickpea Mewsl 20:7

    Google Scholar 

  • Singh KB, Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet Breed 47:199–204

    Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Google Scholar 

  • Singh KB, Reddy MV (1983) Inheritance of resistance to ascochyta blight in chickpea. Crop Sci 23:9–10

    Google Scholar 

  • Singh KB, Reddy MV (1993) Sources of resistance to Aschochyta blight in wild Cicer species. Neth J Plant Pathol 99:163–167

    Google Scholar 

  • Singh KB, Weigand S (1994) Identification of resistant sources in Cicer species to Liriomyza cicerina. Genet Resour Crop Evol 41(2):75–79

    Google Scholar 

  • Singh KB, Weigand S (1996) Registration of three leaf miner-resistant chickpea germplasm lines: ILC 3800, ILC 5901, and ILC 7738. Crop Sci 36(2):472

    Google Scholar 

  • Singh KB, Hawtin GC, Nene YL, Reddy MV (1981) Resistance in chickpeas to Ascochyta blight. Plant Dis 65:586–587

    Google Scholar 

  • Singh G, Singh K, Kapoor S (1982) Screening for sources of resistance to Ascochyta blight of chickpea. Int Chick News 6:15–17

    Google Scholar 

  • Singh G, Kapoor S, Singh K, Gill AS (1984) Screening for resistance to gram wilt. Indian Phytopathol 37:393–394

    Google Scholar 

  • Singh H, Kumar J, Smithson JB, Haware MP (1987) Complementation between genes for resistance to race 1 of Fusarium oxysporum f. sp. ciceri in chickpea. Plant Pathol 36:539–543

    Google Scholar 

  • Singh G, Kaur L, Sharma YR (1991) Ascochyta blight and gray mold resistance in wild species of Cicer. Crop Improv 18:150–151

    Google Scholar 

  • Singh KB, Malhotra RS, Halila MH, Knights EJ, Verma MM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73:137–149

    Google Scholar 

  • Singh G, Sharma YR, Bains TS (1998a) Status of Botrytis gray mold of chickpea research in Punjab, India. In: Pande S, Bakr MA, Johansen C (eds) Recent advances in research and management of Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 7–14

    Google Scholar 

  • Singh K, Ocampo B, Robertson LD (1998b) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Res Crop Evol 45:9–17

    Google Scholar 

  • Singh BK, Srivastava M, Narain U (2003a) Evaluation of biogents Rhizoctonia bataticola causing chickpea dry root rot. Farm Sci J 12:48–49

    Google Scholar 

  • Singh R, Durga Prasad C, Singhal V, Randhawa GJ (2003b) Assessment of genetic diversity in chickpea cultivars using RAPD, AFLP and STMS markers. J Genet Breed 57:165–174

    CAS  Google Scholar 

  • Singh G, Chen W, Rubiales D, Moore K, Sharma YR, Gan Y (2007) Chapter 24: diseases and their management. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 497–519

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–313

    CAS  PubMed  Google Scholar 

  • Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S (2014) Genetic marker discovery, interspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breed 33:297–313

    CAS  Google Scholar 

  • Taleei A, Kanouni H, Baum M (2009) Genetical analysis of ascochyta blight resistance in chickpea. In: Slezak D, Arsalan T, Fang WC, Song X, Kim T (eds) Bioscience and biotechnology, communications in computer and information science. Springer-Verlag, Berlin

    Google Scholar 

  • Taran B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of aschochyta blight resistance in chickpea using a simple sequence repeat linkage map. Genome 50:26–34

    CAS  Google Scholar 

  • Taylor SP, Hollaway GJ, Hunt CH (2000) Effect of field crops on population densities of Pratylenchus neglectus and P. thornei in southeastern Australia; Part 1: P. neglectus. J Nematol 32(4S):591–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tekeoglu M, Santra DK, Kaiser WJ, Muehlbauer FJ (2000a) Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40:1251–1256

    Google Scholar 

  • Tekeoglu M, Tullu A, Kaiser WJ, Muehlbauer FJ (2000b) Inheritance and linkage of two genes that confer resistance to fusarium wilt in chickpea. Crop Sci 40:1247–1251

    CAS  Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    CAS  PubMed  Google Scholar 

  • Tewari SK, Pandey MP (1986) Genetics of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 35:211–215

    Google Scholar 

  • Tewari SK, Pandey MP, Pandya BP, Chaube HS, Tripathi HS (1985) Inheritance of resistance to Botrytis grey mould in chickpea. Int Chick News 12:11–12

    Google Scholar 

  • Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Mukherjee SG (2004) Use of herbicide or lysine plus threonine for non-antibotic selection of transgenic chickpea. Plant Cell Rep 22:576–583

    CAS  PubMed  Google Scholar 

  • Thomas JE, Schwinghamer M, Parry JN, Sharman M, Schilg MA, Dann EK (2004) First report of Tomato spotted wilt virus in chickpea (Cicer arietinum L.) in Australia. Australas Plant Pathol 33:597–599

    Google Scholar 

  • Thomas JE, Perry JN, Schwinghamer MW, Dann EK (2010) Two novel masteroviruses from chickpea (Cicer arietinum L.) in Australia. Arch Virol 155(11):1777–1788

    CAS  PubMed  Google Scholar 

  • Thompson JP, Greco N, Eastwood R, Sharma SB, Scurrah M (2000) Integrated control of nematodes of cool season food legumes—linking research and marketing opportunities for pulses in the 21st century. Proceedings of the third international food legumes research conference. Kluwer Academic Publishers, Dordrecht, pp 491–506

    Google Scholar 

  • Thompson JP, Owen KJ, Stirling GR, Bell MJ (2008) Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Australas Plant Pathol 37:235–242

    Google Scholar 

  • Thompson J, Reen R, Clewett T, Sheedy J, Kelly A, Gogel B, Knights E (2011) Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Aust Plant Pathol 40(6):601–611

    Google Scholar 

  • Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, Kavikishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6:e27275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toker C, Erler F, Ceylan FO, Canci H (2010) Severity of leaf miner [Liriomyza cicerina (Rondani, 1875) Diptera: Agromyzidae] damage in relation to leaf type in chickpea. Turk J Entomol 34:211–226

    Google Scholar 

  • Torres AM, Jain SM, Brar DS (2010) Application of molecular markers for breeding disease resistant varieties in crop plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Netherlands, pp 185–205

    Google Scholar 

  • Trapero-Casas A, Jiménez-Díaz RM (1985) Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75:1146–1151

    Google Scholar 

  • Tripathi HS, Rathi YPS (1992) Epidemiology of Botrytis gray mold of chickpea. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 8–9

    Google Scholar 

  • Tripathi NN, Sharma BK (1983) Incidence of chickpea dry root rot (Rhizoctonia bataticola) in Southern Haryana. Int Chick News 8:22–23

    Google Scholar 

  • Trivedi S, Gurha SN (2006) Status of some soil borne pathogens infecting chickpea in Bundelkhand region of Uttar Pradesh. Indian J Pulses Res 19:88–90

    Google Scholar 

  • Tullu A, Kaiser WJ, Kraft JM, Muehlbauer FJ (1999) A second gene for resistance to race 4 of Fusarium wilt in chickpea and linkage with a RAPD marker. Euphytica 109:43–50

    CAS  Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    CAS  PubMed  Google Scholar 

  • Udupa SM, Weigand F, Saxena MC, Kahl G (1998) Genotyping with microsatellite markers resolves pathotype diversity in aschochta blight pathogen of chickpea. Theor Appl Genet 97:299–307

    CAS  Google Scholar 

  • Upadhyaya HD, Haware MP, Kumar J, Smithson JB (1983a) Resistance to wilt in chickpea. I. Inheritance of late wilting in response to race 1. Euphytica 32:447–452

    Google Scholar 

  • Upadhyaya HD, Smithson JB, Haware MP, Kumar J (1983b) Resistance to wilt in chickpea. II. Further evidence for two genes for resistance to race 1. Euphytica 32:749–755

    Google Scholar 

  • Vail S, Banniza S (2009) Molecular variability and mating-type of Ascochyta rabiei of chickpea from Saskatchewan, Canada. Aust Plant Pathol 38:392–398

    CAS  Google Scholar 

  • Van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Chickpea The (ed) Saxena MC and Singh KB. CAB Int Publ, Wallingford, pp 11–34

    Google Scholar 

  • Van der Maesen LJG, Maxted N, Javadi F, Coles S, Davies AMR (2007) Taxonomy of the genus Cicer revisited. In: Yada SS (ed) Chickpea breeding and management. CAB International, Wallingford, pp 14–30

  • Van Leur JAG, Aftab M, Manning W, Bowring A, Riley MJ (2013) A severe outbreak of chickpea viruses in northern New South Wales Australia. Australas Plant Dis Notes. doi:10.1007/s13314-013-0093-y (published online)

    Google Scholar 

  • Van Leur JAG, Aftab M, Sharman M, Lindbeck K (2014) Viral diseases in canola and winter pulses—impacts and management. Grains Research and Development Corporation (GRDC) updates, Goodiwindi, Queensland

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum L.) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L, Pande S (2014) Marker assisted backcrossing to introgress resistance to fusarium wilt race 1 and ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7:1–11

    Google Scholar 

  • Vir S, Grewal JS (1974) Physiologic specialization in Ascochyta rabiei the causal organism of gram blight. Indian Phytopathol 27:355–360

    Google Scholar 

  • Vir S, Grewal JS, Gupta VP (1975) Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 24:209–211

    Google Scholar 

  • Vovlas N, Rapoport HF, Jiménez Díaz RM, Castillo P (2005) Differences in feeding sites induced by root-knot nematodes Meloidogyne spp in chickpea. Phytopathology 95(4):368–375

    PubMed  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1(4):199–206

    PubMed  Google Scholar 

  • Weigand S (1990) Insect pests of chickpea in the Mediterranean area and possibilities for resistance. In: Saxena MC, Cubero JI, Wery J (eds) Present status and future prospects of chickpea crop production and improvement in the Mediterranean countries. Options Méditerranéennes–Série Séminaires 9, pp 73–76

  • Weimer JL (1931) Alfalfa mosaic. Phytopathology 21:122–123

    Google Scholar 

  • William HM, Morris M, Warburton M, Hoisington DA (2007) Technical, economic and policy considerations on marker-assisted selection in crops: lessons from the experience at an international agricultural research centre. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie J (eds) Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations, Rome, pp 381–404

  • Winter P, Paff T, Udupa SM, Huttel B, Sharma PC et al (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    CAS  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon AM, H-ttel B, Ratnaparkhe M, Tullu A et al (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum, C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    CAS  Google Scholar 

  • Yadav SS, Kumar J, Yadav SK, Singh S, Yadav VS, Turner NC, Redden R (2006) Evaluation of Helicoverpa and drought resistance in Desi and Kabuli chickpea. Plant Genet Resour C 4(3):198–203

    Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1995) Mechanism of resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea: role of oxalic acid in leaf exudate as an antibiotic Factor. J Econ Entomol 88(6):1783–1786

    CAS  Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1997) Roles of oxalic and malic acids in chickpea trichome exudate in host-plant resistance to Helicoverpa armigera. J Chem Ecol 23(4):1195–1210

    CAS  Google Scholar 

  • Zatloukalová P, Hřibová E, Kubaláková M, Suchánková P, Šimková H, Adoración C, Kahl G, Millán T, Doležel J (2011) Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 19:729–739

    PubMed  Google Scholar 

  • Zhang XJ, Scheuring CF, Zhang MP, Dong JJ, Zhang Y, Huang JJ, Lee M-K, Abbo S, Sherman A, Shtienberg D, Chen WD, Muehlbauer F, Zhang H-B (2010) A BAC/BIBAC-based physical map of chickpea (Cicer arietinum L.). BMC Genom 11:501

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Robert Harveson from University of Nebraska–Lincoln, and Dr Pedro Manjarrez-Sandoval from University of Arkansas for providing some of the disease photos. This work was funded by the Grains Research and Development Corporation and Victorian Department of Economic Development, Jobs, Transport and Resources under Project DAV00117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Rodda, M., Gnanasambandam, A. et al. Breeding for biotic stress resistance in chickpea: progress and prospects. Euphytica 204, 257–288 (2015). https://doi.org/10.1007/s10681-015-1462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1462-8

Keywords

Navigation