Skip to main content
Log in

Mapping quantitative resistance loci for bacterial leaf streak disease in hard red spring wheat using an identity by descent mapping approach

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bacterial leaf streak (BLS; caused by Xanthomonas campestris pv. translucens) has become a serious disease of wheat (Triticum aestivum) in the Midwest USA. This study was conducted to map quantitative trait loci (QTL) controlling resistance to BLS in spring wheat using an identity by descent (IBD) mapping approach. The mapping population consisted of 825 individuals representing 60 families. Resistance phenotyping was carried out in greenhouse and field research plots. QTL analysis was performed using both linkage and association-based approaches. Two genomic regions near the simple sequence repeat loci Xwmc522 and Xbarc134, on chromosomes 2A and 6B, respectively, were significantly associated with resistance in both greenhouse and field evaluations. The Xwmc291 and Xbarc3, loci were also significantly associated with greenhouse evaluations of resistance, and Xgwm550 was significantly associated with field observations. Variance explained by the significant markers ranged from 0.56 to 29.56 %, Xwmc522 was most associated with resistance, and narrow-sense heritability for resistance was 0.28. This study demonstrates that the IBD mapping technique is a viable alternative to traditional bi-parental mapping for detecting markers associated with complex traits, like partial disease resistance in breeding populations. This information is potentially useful for marker-assisted selection and should ultimately accelerate development of resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66(1):279–292. doi:10.1086/302698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abecasis G, Cherny SS, Cardon LR (2001) The impact of genotyping error on family-based analysis of quantitative traits. Eur J Hum Genet 9(2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin[mdash]rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Gurung S, Hansen JM, Bonman JM (2011a) Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102(4):390–402. doi:10.1094/PHYTO-07-11-0201

    Article  Google Scholar 

  • Adhikari TB, Hansen JM, Gurung S, Bonman JM (2011b) Identification of new sources of resistance in winter wheat to multiple strains of Xanthomonas translucens pv. undulosa. Plant Dis 95(5):582–588. doi:10.1094/pdis-10-10-0760

    Article  Google Scholar 

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5(1):1–16

    Article  Google Scholar 

  • Ali M, Ibrahim AH, Malla S, Rudd J, Hays D (2012) Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192(2):1–15. doi:10.1007/s10681-012-0824-8

    Google Scholar 

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109(3):630–639. doi:10.1007/s00122-004-1668-y

    Article  CAS  PubMed  Google Scholar 

  • Buell CR, Somerville SC (1997) Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv. campestris. Plant J 12(1):21–29. doi:10.1046/j.1365-313X.1997.12010021.x

    Article  CAS  PubMed  Google Scholar 

  • Camargo L, Williams P, Osborn T (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 85(10):1296–1300

    Article  Google Scholar 

  • Chen C-H, Zheng W, Huang X-M, Zhang D-P, Lin X-H (2006) Major QTL conferring resistance to rice bacterial leaf streak. Agric Sci China 5(3):216–220

    Article  CAS  Google Scholar 

  • Cunfer BM, Scolari BL (1982) Xanthomonas campestris pv. translucens on triticale and other small grains. Phytopathology 72:683–686

    Article  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88(1):17–27. doi:10.1007/BF00222388

    Article  CAS  PubMed  Google Scholar 

  • Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9(3):257–262. doi:10.2135/cropsci1969.0011183X000900030001x

    Article  Google Scholar 

  • Duveiller E (1994) A pictorial series of disease assessment keys for bacterial leaf streak of cereals. Plant Dis 78:137–141

    Article  Google Scholar 

  • Duveiller E, Ginkel M, Thijssen M (1993) Genetic analysis of resistance to bacterial leaf streak caused by Xanthomonas campestris pv. undulosa in bread wheat. Euphytica 66(1):35–43

    Google Scholar 

  • Duveiller E, Fucikovsky L, Rudolph K (eds) (1997) The bacterial diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Forster RL, Schaad NW (1988) Control of black chaff of wheat with seed treatment and a foundation seed health program. Plant Dis 72:935–938

    Article  Google Scholar 

  • Hahn SK, Howland AK, Terry ER (1980) Correlated resistance of cassava to mosaic and bacterial blight diseases. Euphytica 29(2):305–311. doi:10.1007/BF00025127

    Article  Google Scholar 

  • He W-A, Huang D-H, Li R-B, Qiu Y-F, Song J-D, Yang H-N, Zheng J-X, Huang Y-Y, Li X-Q, Liu C, Zhang Y-X, Ma Z-F, Yang Y (2012) Identification of a resistance gene bls1 to bacterial leaf streak in wild rice Oryza rufipogon Griff. J Integr Agric 11(6):962–969. doi:10.1016/S2095-3119(12)60087-2

    Article  CAS  Google Scholar 

  • Johnson JW, Cunfer BM, Morey DD (1987) Inheritance of resistance to Xanthomonas campestris pv. translucens in triticale. Euphytica 36(2):603–607

    Article  Google Scholar 

  • Jung G, Ariyarathne HM, Coyne DP, Nienhuis J (2003) Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43(1):350–357. doi:10.2135/cropsci2003.3500

    Article  CAS  Google Scholar 

  • Kandel YR, Osborne LE, Glover KD, Tande CA (2011) Yield loss in spring wheat due to disease caused by Xanthomonas campestris pv. translucens. Phytopathology 101(6):S87

    Google Scholar 

  • Kandel YR, Glover KD, Osborne LE (2012a) Relationship between the greenhouse and field reactions of spring wheat genotypes to bacterial leaf streak pathogen (Xanthomonas campestris pv. translucens). Phytopathology 102(9):S5

    Google Scholar 

  • Kandel YR, Glover KD, Tande CA, Osborne LE (2012b) Evaluation of spring wheat germplasm for resistance to bacterial leaf streak caused by Xanthomonas campestris pv. translucens. Plant Dis 96(12):1743–1748. doi:10.1094/pdis-03-12-0303-re

    Article  Google Scholar 

  • Karakousis A, Langridge P (2003) A high-throughput plant DNA extraction method for marker analysis. Plant Mol Biol Rep 21(1):95. doi:10.1007/BF02773402

  • Le Guen V, Lespinasse D, Oliver G, Rodier-Goud M, Pinard F, Seguin M (2003) Molecular mapping of genes conferring field resistance to South American leaf light (Microcyclus ulei) in rubber tree. Theor Appl Genet 108(1):160–167

    Article  PubMed  Google Scholar 

  • Milus EA, Duveiller E, Kirkpatrick TL, Chalkey DB (1996) Relationships between disease reactions under controlled conditions and severity of wheat bacterial streak in the field. Plant Dis 80:726–730

    Article  Google Scholar 

  • Rosyara U, Gonzalez-Hernandez J, Glover K, Gedye K, Stein J (2009) Family-based mapping of quantitative trait loci in plant breeding populations with resistance to Fusarium head blight in wheat as an illustration. Theor Appl Genet 118(8):1617–1631. doi:10.1007/s00122-009-1010-9

    Article  CAS  PubMed  Google Scholar 

  • Saari EE, Prescott JM (1975) A scale for appraising the foliar intensity of wheat diseases. Plant Dis Rep 59:377–380

    Google Scholar 

  • Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151(3):421–429. doi:10.1007/s10681-006-9172-x

    Article  Google Scholar 

  • Smith EF, Jones LR, Reddy CS (1919) The black chaff of wheat. Science 50(1280):48

    Article  CAS  PubMed  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DA (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114(4):637–645. doi:10.1007/s00122-006-0464-2

    Article  CAS  PubMed  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Wu W, Li W, Lu H, Worland AJ (2000) Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet 101(1):286–291

    Article  CAS  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92(1):105–111. doi:10.1094/PHYTO.2002.92.1.105

    Article  CAS  PubMed  Google Scholar 

  • Tillman BL, Harrison SA (1996) Heritability of resistance to bacterial streak in winter wheat. Crop Sci 36(2):412–418

    Article  Google Scholar 

  • Tillman BL, Harrison SA, Clark CA, Milus EA, Russin JS (1996) Evaluation of bread wheat germplasm for resistance to bacterial streak. Crop Sci 36(4):1063–1068

    Article  Google Scholar 

  • Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101(4):580–589. doi:10.1007/s001220051519

    Article  CAS  Google Scholar 

  • Tsuji J, Somerville SC, Hammerschmidt R (1991) Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol Mol Plant Path 38(1):57–65. doi:10.1016/S0885-5765(05)80142-0

    Article  Google Scholar 

  • Wigginton JE, Abecasis GR (2005) PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21:3445–3447

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Jenkins JN, McCarty J, Saha S, Stelly D (2006) An additive-dominance model to determine chromosomal effects in chromosome substitution lines and other gemplasms. Theor Appl Genet 112(3):391–399. doi:10.1007/s00122-005-0042-z

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Jenkins JN, McCarty JC (2011) A generalized approach and computer tool for quantitative genetics study. Proceedings of Applied Statistics in Agriculture Manhattan, KS, USA, 2011

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev of Phytopathol 34(1):479–501. doi:10.1146/annurev.phyto.34.1.479

    Article  CAS  Google Scholar 

  • Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42(1):271–277. doi:10.2135/cropsci2002.2710

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Xu S (2004) Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Genetics 166(4):1981–1993. doi:10.1534/genetics.166.4.1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the South Dakota Wheat Commission and Minnesota Wheat Research and Promotion Council for funding this research. We also appreciate the assistance from Mr. Alan Carter, Administrative & Research Computing Facility, for providing access and helping use SDSU local network for running MERLIN. We are also thankful to Kristene Gedye for her assistance in lab work; M. Kadariya, and J. Kleinjan for their help during planting and harvesting field experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl D. Glover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandel, Y.R., Glover, K.D., Osborne, L.E. et al. Mapping quantitative resistance loci for bacterial leaf streak disease in hard red spring wheat using an identity by descent mapping approach. Euphytica 201, 53–65 (2015). https://doi.org/10.1007/s10681-014-1174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1174-5

Keywords

Navigation