Skip to main content
Log in

Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Pea powdery mildew incited by Erysiphe pisi represents a major constraint for pea crop worldwide. Only three resistance genes (er1, er2 and Er3) have been identified in pea germplasm so far. Cellular and molecular aspects involved in their interaction with the pathogen are still unknown. In the present study, we selected three well-characterised powdery mildew pea accessions carrying each of these resistance genes JI2302 (er1), JI2480 (er2) and IFPI3260 (Er3) for a combined cDNA array and histological analyses. Transcripts of twenty pea genes, including three housekeeping genes, were generated at 24, 48 and 72 h after fungal inoculation. The 17 genes analysed encoded for phenylpropanoids, structurally related genes, disease relative response genes, or homologues genes to characterised pathogenesis-related family (PR) genes from barley known to be up-regulated after powdery mildew infection. A total of 16 genes out of the 20 studied were differentially expressed between genotypes and/or E. pisi infection, as well as between the time points considered. The transcript inductions observed are expressed as reinforcement of cell walls, activation of pathogenesis-related proteins and the activation of the phenylpropanoid pathway. Leaves of genotype JI2302 (er1) showed mainly Pschitin and Chi2 (encoding for endochitinases) accumulation after E. pisi inoculation, as well as genes encoding for pea defensins. Leaves of IFPI3260 (Er3) showed the overall highest expression of DRR230a, DRR230b and DRR230c (encoding pea defensins) and Prx7 (encoding an elicitor-inducible peroxidase) after pathogen inoculation. Genotype JI2480 (er2) showed Pschitin and Chi2 accumulation after E. pisi inoculation, as well as reduced activation of pea defensins, compared to er1 and Er3 genotypes, after pathogen attack. Up-regulation of genes involved in these mechanisms combined with high constitutive expression determines a more effective defence against E. pisi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida MS, Cabral KM, Zingali RB, Kurtenbach E (2000) Characterization of two novel defence peptides from pea (Pisum sativum) seeds. Arch Biochem Biophys 378:278–286

    Article  CAS  PubMed  Google Scholar 

  • Amey RC, Spencer-Philips PTN (2006) Toward developing diagnostic for downy mildew diseases. Outlook Pest Manag 17:4–8

    Google Scholar 

  • Amey RC, Schleicher T, Slinn J, Lewis M, Macdonald H, Neill SJ, Spencer-Philips PTN (2008) Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur J Plant Pathol 122:41–55

    Article  CAS  Google Scholar 

  • Barilli E, Rubiales D, Castillejo MA (2012) Comparative proteomic analysis in BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi). J Proteomics 75:5189–5205

    Article  CAS  PubMed  Google Scholar 

  • Biesiadka J, Bujacz G, Sikorski MM, Jaskolski M (2002) Crystal structure of two homologous pathogenesis-related proteins from yellow lupine. J Mol Biol 319:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Brierley HL, Webster P, Long SR (1995) The Pisum sativum Tuba1 gene, a member of a small family of alpha-tubulin sequences. Plant Mol Biol 27:715–727

    Google Scholar 

  • Castillejo MA, Curto M, Fondevilla S, Rubiales D, Jorrín JV (2010) Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J Agric Food Chem 58:12822–12832

    Article  CAS  PubMed  Google Scholar 

  • Chang MM, Chiang CC, Martin MW, Hadwiger LA (1993) Expression of a pea disease resistance response gene in the potato cultivar Shepody. Am Potato J 70:635–647

    Article  Google Scholar 

  • Chiang CC, Hadwiger LA (1991) The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. Mol Plant Microbe Interact 4:324–331

    Google Scholar 

  • Clark TA, Zeyen RJ, Smith AG, Carver TLW, Vance CP (1994) Phenylalanine ammonia-lyase messenger-RNA accumulation, enzyme-activity and cytoplasmic responses in barley isolines, differing at Ml-a and Ml-o loci, attacked by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 44:171–185

    Article  CAS  Google Scholar 

  • Collinge DB, Gregersen PL, Thordal-Christensen H (2002) The nature and role of defense response genes in cereals. In: Belanger RR, Bushnell WR, Dick AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 146–160

    Google Scholar 

  • Cousin R (1997) Pea (Pisum sativum L.). Field Crop Res 53:111–130

    Article  Google Scholar 

  • Curto M, Camafeita E, López JA, Maldonado AM, Rubiales D, Jorrín JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Eysiphe pisi). Proteomics 6:163–174

    Article  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Realtime RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falloon RE, Sutherland PW, Hallett IC (1989) Morphology of Erysiphe pisi on leaves of Pisum sativum. Can J Bot 67:3410–3416

    Article  Google Scholar 

  • Finnie C, Andersen CH, Borch J, Gjetting S, Christensen AB, de Boer AH, Thordal-Christensen H, Collinge DB (2002) Do 14-3-3 proteins and plasma membranes H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus? Plant Mol Biol 49:137–147

    Article  CAS  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea: a review. Agron Sustain Dev 32:401–409

    Article  CAS  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007a) Identification and characterization of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed 126:113–119

    Article  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007b) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Article  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2010) Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breed 130:281–282

    Article  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycospherella pinodes in pea using microarray technology. BMC Genomics 12:28. doi:10.1186/1471-2164-12-28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foster-Hartnett D, Danesh D, Peñuela S, Sharopova N, Endre G, Vandenbosch KA, Young ND, Samac DA (2007) Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol Plant Pathol 8:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger LA (1988) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11:713–715

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607

    Article  CAS  Google Scholar 

  • Gjetting T, Carver TLW, Skøt L, Lyngkjær MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 17:729–738

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defence responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4:301–308

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Thordal-Christensen H, Forster H, Collinge DB (1997) Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f.sp. hordei (syn. Erysiphe graminis f.sp. hordei). Physiol Mol Plant Pathol 51:85–97

    Article  CAS  Google Scholar 

  • Gucciardo S, Wisniewski JP, Brewin NJ, Bornemann S (2007) A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Exp Bot 58:1161–1171

    Google Scholar 

  • Hadwiger LA, Chang MM, Parsons MA (1995) Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity and pisatin production. Mol Plant Microbe Interact 8:871–879

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn DJ (1991) Handbook of pea diseases. University of Wisconsin, Madison

    Google Scholar 

  • Heringa RJ, Van Norel A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169

    Google Scholar 

  • Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180

    Article  CAS  PubMed  Google Scholar 

  • Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Article  CAS  PubMed  Google Scholar 

  • Ichinose Y, Kawamata S, Yamada T, An CC, Kajiwara T, Shiraishi T, Oku H (1992) Molecular-cloning of chalcone synthase CDNAs from Pisum sativum. Plant Mol Biol 18:1009–1012

    Google Scholar 

  • Izzo AD, Mazzola M (2009) Hybridization of an ITS-based macroarray with ITS community probes for characterization of complex communities of fungi and fungal-like protists. Mycol Res 113:802–812

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Shaffrath U (2009) The barley mutant emr2 showed enhanced resistance against several fungal leaf pathogens. Plant Breed 128:124–129

    Article  CAS  Google Scholar 

  • Kristensen BK, Bloch H, Rasmussen SK (1999) Barley coleoptiles peroxidise: purification, molecular cloning, and induction by pathogens. Plant Physiol 120:501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai FM, DeLong C, Mei K, Wignes T, Fobert PR (2002) Analysis of the DRR230 family of pea defensins: gene expression pattern and evidence of broad host-range antifungal activity. Plant Sci 163:855–864

    Article  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM, Yu XS (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plantarum 119:544–553

    Article  CAS  Google Scholar 

  • Madrid E, Gil J, Rubiales D, Krajinski F, Schlereth A, Millán T (2010) Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatulaUromyces striatus interaction. Theor Appl Genet 121:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–63

    Google Scholar 

  • McGee JD, Hamer JE, Hodges TK (2001) Characterization of PR10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant Microbe Interact 14:877–886

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Roohparvar R, Torabi M (2001) Induced chitinase activity in resistant wheat leaves inoculated with an incompatible race of Puccinia striiformis f. sp. tritici, the causal agent of yellow rust disease. Mycopathologia 154:119–126

    Article  Google Scholar 

  • Moiseyer GP, Beintema JJ, Fedoreyeva LI, Yakovlel GI (1994) High sequence similarity between ribonuclease from gingseng calluses and fungus-elicited proteins from parsley indicates pathogenesis-related proteins are RNAses. Planta 193:470–472

    Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acids and jasmonates on salt-stress inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura N, Marutani M, Sanematsu S, Toyoda K, Inagaki Y, Shiraishi T, Ichinose Y (2003) Phylogenetic classification of Dof-type transcription factors in pea (Pisum sativum). Plant Biotechnol 20:247–252

    Article  CAS  Google Scholar 

  • Olesen KL, Carver TLW, Lynkjaer M (2003) Fungal suppression of resistance against inappropriate Blumeria graminis formae speciales in barley, oat and wheat. Physiol Mol Plant Pathol 62:37–50

    Article  Google Scholar 

  • Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    Article  CAS  PubMed  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RGF, Bai Y, Lotti C, Ricciardi L (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431

    Article  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microbial Ecol 52:575–582

    Article  Google Scholar 

  • Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    Article  CAS  PubMed  Google Scholar 

  • Ramonell K, Berrocal-Lobo M, Koh S, Wan JR, Edwards H, Stacey G, Somerville S (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138:1027–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rana JC, Banyal DK, Sharma KD, Sharma MK, Gupta SK, Yadav SK (2013) Screening of pea germplasm for resistance to powdery mildew. Euphytica 189:271–282

    Article  CAS  Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Rubiales D, Carver TLW (2000) Defence reactions of Hordeum chilense accessions to three formae speciales of cereal powdery mildew fungi. Can J Bot 78:1561–1570

    Google Scholar 

  • Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microbe In 12:976–984

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schlumbaum AF, Mauch F, Vögeli K, Boiler T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck MA, Cammue B, De Bolle M (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Foster EM, Boyd LA, Brown JKM (1996) The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol 45:302–309

    Article  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, Mcphee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Srivastava PK, Deleo AB, Old LJ (1986) Tumor rejection antigens of chemically-induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407–3411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su H, Hwang SF, Chang KF, Conner RL, Howard RJ, Turbull GD, Blade SF (2003) Differences in the growth stages of Erysiphe pisi on cultivars of field pea (Pisum sativum L.). J Plant Dis Protect 111:64–70

    Google Scholar 

  • Thordal-Christensen H, Brandt J, Cho BH, Rasmussen SK, Gregersen PL, Smedegard V, Collinge DB (1992) cDNA and characterisation of 2 barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiol Mol Plant Pathol 40:395–409

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Gregersen PL, Collinge DB (2000) The barley/Blumeria (syn. Erysiphe) graminis interaction: a case study. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluver Academic Publishers, The Netherlands, pp 77–100

    Chapter  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Article  Google Scholar 

  • Vad K, Mikkelsen JD, Collinge DB (1991) Induction, purification and characterization of chitinases isolated from pea leaves inoculated with Ascochyta pisi. Planta 184:24–29

    Article  CAS  PubMed  Google Scholar 

  • Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photoch Photobiol B 84:150–160

    Article  CAS  Google Scholar 

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    Article  CAS  Google Scholar 

  • Woo HH, Brigham LA, Hawes MC (1994) Primary structure of the messenger-RNA encoding a 16.5-kDa ubiquitin-conjugating enzyme of Pisum sativum. Gene 148:369–370

    Google Scholar 

  • Yamada T, Tanaka Y, Sriprasertsak P, Kato H, Hashimoto T, Kawamata S, Ichinose Y, Kato H, Shiraishi T, Oku H (1992) Phenylalanine ammonia-lyase genes from Pisum sativum-structure, organ-specific expression and regulation by fungal elicitor and suppressor. Plant Cell Physiol 33:715–725

    Google Scholar 

  • Zeyen RJ, Carver TLW, Lyngkjaer MF (2002) Epidermal cell papillae. In: Bélanger RR, Bushnell WR, Dick AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS Press, St. Paul, pp 107–125

    Google Scholar 

Download references

Acknowledgments

Financial support by AGL2011-22524 Project co-financed by FEDER is acknowledged. E. Barilli was financed by a JAEdoc Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barilli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barilli, E., Rubiales, D., Gjetting, T. et al. Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 198, 13–28 (2014). https://doi.org/10.1007/s10681-014-1062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1062-z

Keywords

Navigation