Skip to main content
Log in

QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fifty-eight F2 individuals derived from an interspecific cross between cultivated eggplant, Solanum melongena, and its wild relative, S. linnaeanum, were phenotyped for 42 plant, leaf, flower, and fruit traits. Composite interval mapping analysis using genotypic data from 736 molecular markers revealed the positions of 71 statistically significant (P ≤ 0.05) quantitative trait loci (QTL) influencing 32 of the morphological traits. Although most QTL were location-specific, QTL governing three traits (leaf lobing, leaf prickles and prickle anthocyanin) were detected in both experimental locations. Analysis of three additional traits (stem prickles, fruit calyx prickles and fruit length) in both locations yielded QTL in similar but non-overlapping map positions. The majority (69 %) of the QTL corresponded closely with those detected in previous analyses of this data set. However the increased resolution of the linkage map combined with advances in QTL mapping permitted more precise localization, such that the average interval length of these QTL was reduced by 93 %. Thirty-one percent of the QTL were novel, suggesting that simple linear regression with a low density linkage map (the method used in previous studies of this population) missed a substantial portion of significant QTL. Hotspots of QTL affecting plant hairiness, prickliness, and pigmentation were identified on chromosomes 3, 6, and 10, respectively, and may reflect the pleiotropic activity of single structural or regulatory genes at these positions. Based on synteny between the eggplant, tomato, potato and pepper genomes, putative orthologs were identified for 35 % of the QTL suggesting strong conservation of gene function within the Solanaceae. These results should make it easier to target particular loci for map-based cloning and marker-assisted selection studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    PubMed  CAS  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix A-M, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  PubMed  CAS  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Vale G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L, Rotino GL (2012) A RAD tag derived marker based eggplant linkage map and location of QTLs determining anthocyanin pigmentation. PLoS ONE 7:e43740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Bonierbale MW, Plaisted RL, Pineda O, Tanksley SD (1994) QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet 87:973–987

    Article  PubMed  CAS  Google Scholar 

  • Busch BL, Schmitz G, Rossmann S, Piron F, Ding J, Bendahmane A, Theres K (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23:3595–3609

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clayberg CD (1962) Inheritance and linkage of fruit stripe Fs. Rep Tomato Genet Coop 12:22–23

    Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Daunay MC, Aubert S, Frary A, Doganlar S, Lester RN, Barendse G, van der Weerden G, Hennart JW, Haanstra J, Dauphin F, Jullian E (2004) Eggplant (Solanum melongena) fruit colour: pigments measurements and genetics. In: Proceedings of the XIIth EUCARPIA meeting on genetics and breeding of Capsicum and eggplant, 17–19 May 2004, Noordwijkerhout, The Netherlands, pp 108–116

  • De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432

    Article  PubMed  CAS  Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay M, Lester R, Tanksley S (2002a) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002b) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Huvenaars K, Mank R, Frary A (in press) High resolution map of eggplant (Solanum melongena) reveals extensive chromosome rearrangement in domesticated members of the Solanaceae. Euphytica

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine-mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed Central  PubMed  CAS  Google Scholar 

  • FAO Statistics (2013) http://faostat.fao.org. Accessed 15 Jan 2013

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knapp E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanskley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Doganlar S, Daunay MC, Tanksley SD (2003a) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of Solanaceous species. Theor Appl Genet 107:359–370

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003b) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004) A comparative study of the genetic bases of natural variation in tomato leaf sepal and petal morphology. Theor Appl Genet 109:523–533

    Article  PubMed  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mon Genet Genomics 266:821–826

    Article  CAS  Google Scholar 

  • Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet 125:47–56

    Article  PubMed  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  PubMed  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound tomato leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0 an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18:672–677

    Article  PubMed  CAS  Google Scholar 

  • Ku H-M, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9:844–850

    Article  Google Scholar 

  • Liharska TB, Hontelez J, van Kammen A, Zabel P, Koornneef M (1997) Molecular mapping around the centromere of tomato chromosome 6 using irradiation-induced deletions. Theor Appl Genet 95:969–974

    Article  CAS  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J, van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed Central  PubMed  CAS  Google Scholar 

  • MacArthur JW (1934) Linkage groups in the tomato. J Genet 29:123–133

    Article  Google Scholar 

  • Maliepaard C, Bas N, van Heusden S, Kos J, Pet G, Verkerk R, Vrielink R, Zabel P, Lindhout P (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 75:425–433

    Article  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightnew J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis modification and transport. Plant Cell 15:1689–1703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Monforte A, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm collection. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • Nelson JC (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Article  Google Scholar 

  • Nunome T, Yoshida T, Hirai M (1998) Genetic linkage map of eggplant. In: Proceedings of the 10th Eucarpia meeting on genetics and breeding of Capsicum and eggplant, Avignon France, pp 239–242

  • Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26

    Article  CAS  Google Scholar 

  • Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred line population. Genome 40:242–248

    Google Scholar 

  • Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Muñoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, van Deynze A, Giovannoni JJ, Bennett AB (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, de Prince JP, Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder S, Wing RA, Wu W, Young ND (1992) High-density linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley rust stripe. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yates HE, Frary A, Doganlar S, Frampton A, Eannetta N, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Zheng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Google Scholar 

  • Zygier S, Chaim A-B, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Career Project (TUBITAK 104T224) from the Scientific and Technical Research Council of Turkey to Sami Doğanlar. This execution of the AFLP marker work was financially supported by DeRuiterZonen C.V., Rijk Zwaan Zaadteelt and Zaadhandel B.V., and Vilmorin Clause & Cie S.A. The AFLP® technology is covered by patents and/or patent applications of Keygene N.V. AFLP and KeyGene are registered trademarks of Keygene N.V. Other trademarks are the property of their respective owners.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Doğanlar.

Additional information

The localization of QTL for 32 morphological traits on the high-resolution map of the eggplant genome has allowed hotspots and putative orthologs with other solanaceous species to be identified.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frary, A., Frary, A., Daunay, MC. et al. QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica 197, 211–228 (2014). https://doi.org/10.1007/s10681-013-1060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1060-6

Keywords

Navigation