Skip to main content
Log in

Mapping stripe rust resistance gene YrSph derived from Tritium sphaerococcum Perc. with SSR, SRAP, and TRAP markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of common wheat (Triticum aestivum L.) worldwide. Growing resistant cultivars is the most effective approach to control the disease. To determine inheritance of stripe rust resistance and map the resistance gene in a common wheat line D31, developed from Triticum sphaerococcum Perc. (accession number AS348), F1, F2, and BC1 progenies derived from the Taichung 29 × D31 cross were firstly inoculated with Chinese PST race CYR32 during whole growth stages under the field conditions. Genetic analysis indicated that the resistance to CYR32 in the line D31 was conferred by one recessive gene, temporarily designated as YrSph. A total of 400 simple sequence repeat (SSR), 315 pairs of sequence-related amplified polymorphism and 42 pairs of target region amplified polymorphism markers were screened, and four SSR markers and three TRAP markers were found to be polymorphic between the resistant and susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population and indicated that all of the ten markers were linked to the resistance gene, two of which flanked the locus at 8.5 and 6.9 cM, respectively. The SSR markers mapped the resistance gene on chromosome arm 2AS. The results of chromosome location and pedigree analysis indicate that YrSph was probably a novel stripe rust resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP, and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterization and origin of rust and powdery mildew resistance in VPM1 wheat. Euphytica 77:53–61

    Article  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Shearman RC, Parmaksizand I, Dweikat I (2004) Comparative analysis of seeded and vegetative biotype buffalo grasses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109:280–288

    Article  PubMed  CAS  Google Scholar 

  • Chague V, Fahima T, Sun GL, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Roder MS, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050–1056

    PubMed  CAS  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655

    Article  Google Scholar 

  • Chicaiza O, Khan IA, Zhang X, Brevis JC, Chen X, Dubcovsky J (2006) Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci 46:485–487

    Article  Google Scholar 

  • Dong YS (1982) World wheat (in Chinese). China Agriculture Press, Beijing

    Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoorand A, Wellings CR (2004) Yr32 for resistance to stripe rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  PubMed  CAS  Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gulsen O, Shearman RC, Vogel KP, Lee DJ, Baenziger PS, Heng-Moss TM, Budak H (2005) Nuclear genome diversity and relationships among naturally occurring buffalo grass genotypes determined by sequence-related amplified polymorphism. HortScience 40:537–541

    CAS  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh D, Singh RP (2011) New slow rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism (TRAP), a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  • Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (L.) genotyping. Euphytica 144:225–235

    Article  CAS  Google Scholar 

  • Hu JG, Mou BQ, Vick BA (2007) Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol 54:1667–1674

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lan XJ, Liu DC, Zheng YL (2003) Studies on the inheritance of stripe rust resistance in Triticum sphaerococcum. Acta Phytopathol Sin 1:91

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li ZQ, Liu HW (1957) Discussions about decreases in resistance to wheat stripe rust of BimA1. Acta Bot Boreal-Occident Sin 2:93–102

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li ZQ, Zeng SM (2000) Wheat rusts in China. China Agricultural Press, Beijing

    Google Scholar 

  • Li ZQ, Zeng SM (2002) Wheat rusts in China. China Agriculture Press, Beijing

    Google Scholar 

  • Li ZQ, Shang HS, Yin XL, Qiang ZF, Zhao YQ, Lu HP, Hong XW, Song WZ, Liu SJ (1984) Studies on the breakdown of lovrin cultivars of wheat to stripe rust (Puccinia striiformis West). Sci Agric Sin 1:68–74

    Google Scholar 

  • Li AX, Liu QC, Wang QM, Zhang LM, Zhai H, Liu SZ (2010) Construction of molecular linkage maps using SRAP markers in sweet potato. Acta Agron Sin 8:1286–1295

    Article  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Liu XK (1988) Study on the yellow rust resistance to common wheat (T. aetivum). Plant Prot 15:33–39

    Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 3:317–321

    Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen TL, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Luo PG, Ren ZL, Zhang HQ (2005) Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology 95:1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Lupton FCH, Mace RCF (1962) Inheritance of resistance to yellow rust (Puccinia glumarum Erikss and Henn.) in seven varieties of wheat. Trans Br Mycol Soc 45:21–45

    Article  Google Scholar 

  • Ma JX, Zhou RG, Dong YS, Wang LF, Wang XM, Jia JZ (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L using microsatellite markers. Euphytica 120:219–226

    Article  CAS  Google Scholar 

  • Maia N (1967) Obtention des blés tendres resistants au pietin-verse par croisements interspecifiques blés X Aegilops. Comptes Rendus des Séances de l’Académie d’Agriculture de France 53:149–154

    Google Scholar 

  • McIntosh RA, Brown GN (1997) Anticipatory breeding for resistance to rust diseases in wheat. Annu Rev Phytopathol 35:311–326

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Proceedings of the 10th international wheat genetics symposium, vol 4, Paestum, Italy, 1–6 Sept 2003

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2007) Catalogue of gene symbols for wheat: 2007 suppl

  • McIntosh RA, Dubcovsk J, Rogers WJ, Morris C, Appels R, Xia XC (2010) Catalogue of gene symbols for wheat: 2010 suppl. Annu Wheat Newsl

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregation populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Hu J, Grünwald NJ, Larsen KM (2006) Potential application of targeted region amplified polymorphism (TRAP) markers for mapping and tagging disease resistance traits in common bean. Crop Sci 46:910–916

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Peter BEM, Li GY (2007) Development of SRAP, SNP, and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rojas-Barros P, Jan CC, Hu J (2005) Mapping of a recessive branching gene in RHA 271 using molecular markers. u. In: Proceedings of the 27th Sunflower Research Workshop, Fargo, ND, 12–13 Jan 2005

  • Saghai MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  Google Scholar 

  • Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    PubMed  CAS  Google Scholar 

  • Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II. Academic, New York, pp 61–101

    Google Scholar 

  • Stubbs RW (1988) Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 23–38

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  PubMed  CAS  Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Sun Q, Wei Y, Ni C, Xie C, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat. Plant Breed 121:539–541

    Article  CAS  Google Scholar 

  • Sun ZD, Wang ZN, Tu JX, Zhang JF, Yu FQ, Peter BEV, Li GY (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619

    Article  Google Scholar 

  • Wang LF, Ma JX, Zhou RH, Wang XM, Jia JZ (2002) Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.). Euphytica 124:71–73

    Article  CAS  Google Scholar 

  • Wellings CR, McIntosh RA (1990) Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol 39:316–325

    Article  Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in western Australia: evidence for a foreign incursion. Aust Plant Pathol 32:321–322

    Article  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the YR5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    PubMed  CAS  Google Scholar 

  • Yang ZM, Tang BR, Shen KQ, Xia XC (1994) A strategic program in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin 20:385–394

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program and 2011CB100100) and the National Basic Research Special Program of China (Grant No. 2010CB134402). The authors are grateful to Prof. Q. Z. Jia, Plant Protection Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, People’s Republic of China, for providing the stripe rust isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Liang Zheng.

Additional information

Shi-Sheng Chen and Guo-Yue Chen contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SS., Chen, GY., Chen, H. et al. Mapping stripe rust resistance gene YrSph derived from Tritium sphaerococcum Perc. with SSR, SRAP, and TRAP markers. Euphytica 185, 19–26 (2012). https://doi.org/10.1007/s10681-011-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0593-9

Keywords

Navigation