Skip to main content
Log in

QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grain yield under post-anthesis drought stress is one of the most complex traits, which is inherited quantitatively. The present study was conducted to identify genes determining post-anthesis drought stress tolerance in bread wheat through Quantitative Trait Loci (QTLs) analysis. Two cultivated bread wheat accessions were selected as parental lines. Population phenotyping was carried out on 133 F2:3 families. Two field experiments and two experiments in the greenhouse were conducted at IPK-Gatersleben, Germany with control and post-anthesis stress conditions in each experiment. Thousand-grain weight was recorded as the main wheat yield component, which is reduced by post-anthesis drought stress. Chemical desiccation was applied in three experiments as simulator of post-anthesis drought stress whereas water stress was applied in one greenhouse experiment. Analysis of variance showed significant differences among the F2:3 families. The molecular genetic linkage map including 293 marker loci associated to 19 wheat chromosomes was applied for QTL analysis. The present study revealed four and six QTLs for thousand-grain weight under control and stress conditions, respectively. Only one QTL on chromosome 4BL was common for both conditions. Five QTLs on chromosomes 1AL, 4AL, 7AS, and 7DS were found to be specific to the stress condition. Both parents contributed alleles for drought tolerance. Taking the known reciprocal translocation of chromosomes 4AL/7BS into account, the importance of the short arms of homoeologous group 7 is confirmed for drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beavis WD (1998) QTL analyses—power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Blum A, Mayer J, Golan G (1983) Chemical desiccation of wheat plants as a simulator of post-anthesis stress II. Relations to drought stress. Field Crops Res 6:149–155

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Brown J, Caligari PDS (2008) An introduction to plant breeding, Oxford, pp 209

  • Byerlee D, Morris M (1993) Research for marginal environments—are we underinvested. Food Policy 18:381–393

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298

    Article  Google Scholar 

  • Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225

    Article  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Hai L, Guo HJ, Wagner C, Xiao SH, Friedt W (2008) Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci 175:226–232

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London, p 381

    Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258

    Article  CAS  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kordenaeej A, Nasrollah-Nejad A, Shojaeian A, Lelley T (2008) Mapping QTLs related to yield and yield components under drought in bread wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) The 11th international wheat genetics symposium proceedings. Sydney University Press, Sydney

    Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L, Green P (1987) Mapmaker a computer package for constructing genetic-linkage maps. Cytogenet Cell Genet 46:642

    Google Scholar 

  • Landjeva S, Neumann K, Lohwasser U, Börner A (2008) Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biologia Plantarum 52:259–266

    Article  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Nonhomologous translocations between group-4, group-5 and group-7 chromosomes within wheat and rye. Theor Appl Genet 83:305–312

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer associates, Inc, Sunderland, p 980

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Giuliani S, Tuberosa R (2009) Genomics of tolerance to abiotic stress in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, Heidelberg, pp 481–757

    Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome/National Research Council 48:870–883

    CAS  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) International wheat genetics symposium, vol 5. University of Saskatchewan Saskatoon, Saskatchewan

    Google Scholar 

  • Mohammadi M, Yang RC, Spaner D (2006) QTL mapping of coleoptile length, root length, and seed vigor index in wheat under normal and osmotic stress conditions. Can J Plant Sci 86:185

    Google Scholar 

  • Morgan JM (1991) A gene controlling differences in osmoregulation in wheat. Aust J Plant Physiol 18:249–257

    Article  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Nicolas ME, Turner NC (1993) Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during post-anthesis drought. Field Crops Res 31:155–171

    Article  Google Scholar 

  • Poehlman JM, Sleper DA (1995) Breeding field crops. Iowa State University Press, Iowa, p 494

    Google Scholar 

  • Quarrie SA, Lebreton C, Gulli M, Calestani C, Marmiroli N (1994) QTL analysis of ABA production in wheat and maize and associated physiological traits. Russ J Plant Physiol 41:565–571

    Google Scholar 

  • Quarrie SA, Stojanovic J, Pekic S (1999) Improving drought resistance in small-grained cereals: a case study, progress and prospects. Plant Growth Regul 29:1–21

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008a) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137

    Article  PubMed  CAS  Google Scholar 

  • Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008b) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59:891–905

    Article  CAS  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8:79–86

    Article  PubMed  Google Scholar 

  • Salem KFM, Röder MS, Börner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374

    Article  Google Scholar 

  • SAS-Institute (2000) SAS/STAT user’s guide, 6th edn. SAS Institute Inc., Cary

    Google Scholar 

  • Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (2001) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York

    Google Scholar 

  • SPSS-Inc (1999) SPSS base 10.0 for windows user’s guide. SPSS Inc., Chicago

    Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Article  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE (2007) PLABQTL—a program for the composite interval mapping of QTL

  • Varshney RK, Prasad M, Roy JK, Harjit-Singh NK, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  PubMed  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

  • Zaynali Nezhad K (2010) Genetic linkage map construction and identification of quantitative trait loci (QTLs) determining post-anthesis drought tolerance and other agronomic traits in bread wheat. Dissertation, Martin-Luther-University Halle-Wittenberg

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Iranian government and in particular, the Ministry of Science, Research and Technology of Iran for the financial support. We would like to thank Khaled F. M. Salem for parental lines selection and mapping population development. We are also indebted to Christof Pietsch and Elena K. Khlestkina for their assistance in SSR data scoring and map construction. We would like to appreciate the technical assistance from Mrs. Anette Heber, from Gene and Genome Mapping group and Mrs. Renate Voss, Mrs. Annette Marlow, Mrs. Irma Friese, Mrs. Marion Fischer, from Resources Genetics and Reproduction group from IPK-Gatersleben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Zaynali Nezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaynali Nezhad, K., Weber, W.E., Röder, M.S. et al. QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica 186, 127–138 (2012). https://doi.org/10.1007/s10681-011-0559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0559-y

Keywords

Navigation