Skip to main content
Log in

A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A genetic map was developed with microsatellite (simple sequence repeat, SSR) markers and 148 recombinant inbred lines (RILs) derived from a cross between two cultivated cucumber (Cucumis sativus L.) inbred lines 9110Gt and 9930, which was also segregating for seven horticulturally important traits including bitterfree foliage (bi), gynoecious sex expression (F), uniform immature fruit color (u), glossy fruit skin (d), heavy netting of mature fruit (H), no fruit ribbing (fr), and virescent leaf (v-1). Linkage analysis placed 248 microsatellite loci into seven linkage groups spanning 711.9 cM with a mean marker interval of 2.8 cM. Based on shared markers with an early cucumber genetic map, the 7 linkage groups could be assigned to seven cucumber chromosomes. The four fruit epidermal feature-related genes, u, d, H and fr were found to be tightly linked loci in Chromosome 5, and the other three (F, bi and v-1) were placed in different locations of Chromosome 6. It was the first time to map the four genes H, fr, bi and v-1 with molecular markers. In addition, this is the first report of the inheritance of fruit ribbing in cucumber, which was controlled by a single, dominant gene designated as Fr. Mapping information from this study opens the way for marker-assisted selection and map-based cloning of these horticulturally important genes in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J (2001) Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome 44:111–119

    Article  PubMed  CAS  Google Scholar 

  • Cavangnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569

    Article  Google Scholar 

  • Fanourakis NE (1984) Inheritance and linkage studies of the fruit epidermis structure and investigation of linkage relations of several traits and of meiosis in cucumber. Dissertation University of Wisconsin

  • Fanourakis NE, Simon PW (1987a) Inheritance and linkage studies of the fruit epidermis structure in cucumber. J Hered 78:369–371

    Google Scholar 

  • Fanourakis NE, Simon PW (1987b) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J Am Soc Hort Sci 127:545–557

    CAS  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  PubMed  CAS  Google Scholar 

  • Fukino N, Yoshioka Y, Kubo N, Hira M, Sugiyama M, Sakata Y, Matsumoto S (2008) Development of 101 novel SSR markers and construction of an SSR-based genetic linkage map in cucumber (Cucumis sativus L.). Breed Sci 58:475–483

    Article  CAS  Google Scholar 

  • Han YH, Zhang ZH, Lui JH, Lu JY, Huang SW, Jin WW (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber by fluorescence in situ hybridization. Cytogenet Genome Res 122:80–88

    Article  PubMed  CAS  Google Scholar 

  • Heang D, Sato H, Sassa H, Koba T (2008) Detection of two QTLs for fruit weight in cucumber (Cucumis sativus). In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France), May 21–24th, 2008, pp 511–514

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:223–247

    Article  Google Scholar 

  • Kang HX, Weng Y, Yang YH, Zhang ZH, Zhang SP, Mao ZC, Cheng GH, Gu XF, Huang SW, Xie BY (2010) Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor Appl Genet 122:795–803

    Article  PubMed  Google Scholar 

  • Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet 91:53–61

    Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkage among RFLP, RAPD, isozyme, disease resisitance and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Koo DH, Choi HW, Cho J, Hur Y, Bang JW (2005) A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48:534–540

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lui L, Cai R, Yuan X, He H, Pan J (2008) QTL molecular marker mapping of powdery mildew resistance in cucumber. Sci China C Life Sci 9:851–856

    Google Scholar 

  • Meglic V, Staub JE (1996) Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.). Theor Appl Genet 92:865–872

    Article  CAS  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Mliki A, Staub JE, Sun ZY, Ghorbel A (2003) Genetic diversity in African cucumber (Cucumis sativus L.) provides potential for germplasm enhancement. Genet Resour Crop Evol 50:461–468

    Article  CAS  Google Scholar 

  • Park Y, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Pierce LK, Wehner TC (1990) Review of genes and linkage groups in cucumber. HortScience 25:605–615

    CAS  Google Scholar 

  • Ramachandran C, Seshadri VS (1986) Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Zeitschrift für Pflanzenzuchtung 96:25–38

    Google Scholar 

  • Ren Y, Zhang ZH, Lui JH, Staub JE, Han YH et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Article  PubMed  Google Scholar 

  • Robbins MD, Casler MD, Staub JE (2008) Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breed 22:131–139

    Article  Google Scholar 

  • Rudich J, Halevy AH, Kedar N (1972) Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol 49:998–999

    Article  PubMed  CAS  Google Scholar 

  • Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250

    Article  PubMed  CAS  Google Scholar 

  • Serquen FC, Bacher J, Staub JE (1997) Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed 3:257–268

    Article  CAS  Google Scholar 

  • Shibuya M, Adachi S, Ebizuka Y (2004) Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60:6995–7003

    Article  CAS  Google Scholar 

  • Staub JE, Meglic V (1993) Molecular genetic markers and their legal relevance for cultigen discrimination: a case study in cucumber. HortTechnology 3:291–300

    Google Scholar 

  • Tanurdzic M, Banks JA (2004) Sex-determining mechanisms in land plants. Plant Cell 16:61–71

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Walters SA, Shetty NV, Wehner TC (2001) Segregation and linkage of several genes in cucumber. J Am Soc Hort Sci 126:442–450

    CAS  Google Scholar 

  • Wehner TC (2005) Gene List 2005 for Cucumber. Cucurbit Genet Coop Rpt 28–29:105–141

    Google Scholar 

  • Weng YQ, Johnson S, Staub JE, Huang SW (2010) An extended microsatellite genetic map of cucumber, Cucumis sativus L. HortScience 45:880–886

    Google Scholar 

  • Yuan XJ, Pan JS, Cai R, Guan Y, Lui LZ et al (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Zhang WW, He H, Yuan G, Du H, Yuan LH, Li Z, Yao DQ, Pan JS, Cai R (2009) Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Genet 120:645–654

    Article  PubMed  Google Scholar 

  • Zhang SP, Miao H, Gu XF, Yang YH, Xie BY, Wang XW, Huang SW, Du YC, Sun RF (2010) Genetic mapping of the scab resistance gene Ccu in cucumber. J Am Soc Hort Sci 135:53–58

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Earmark Fund for Modern Agro-industry Technology Research System; the 948 Program (Project # 2008-Z42) of the Ministry of Agriculture, China; the 863 and 973 Program of the Ministry of Science and Technology, China (Projects # 2006AA100108, 2006AA10Z1A8, 2008BADB1B05, and 2009CB119004,); the Key Laboratory of Genetic Improvement for Horticultural Crops, Ministry of Agriculture, China, and Core Research Budget of the Non-profit Governmental Research Institution (ICS, CAAS) (Project # 201011), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfang Gu.

Additional information

Han Miao and Shengping Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, H., Zhang, S., Wang, X. et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182, 167–176 (2011). https://doi.org/10.1007/s10681-011-0410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0410-5

Keywords

Navigation