Skip to main content
Log in

Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) controlling germination, seed vigour and longevity, and early seedling growth were identified using a set of common wheat lines carrying known D genome introgression segments. Seed germination (capacity, timing, rate and synchronicity) was characterized by a standard germination test, based either on the 1 mm root protrusion (germination sensu stricto) or the development of normal seedlings. To quantify seed vigour, the same traits were measured from batches of seed exposed for 72 h at 43°C and high (ca. 100%) humidity. Seed longevity was evaluated from the relative trait values. Seedling growth was assessed both under non-stressed and under osmotic stress conditions. Twenty QTL were mapped to chromosomes 1D, 2D, 4D, 5D, and 7D. Most of the QTL for germination sensu stricto clustered on chromosome 1DS in the region Xgwm1291Xgwm337. A region on chromosome 7DS associated with Xgwm1002 harboured loci controlling the development of normal seedlings. Seed vigour-related QTL were present in a region of chromosome 5DL linked to Xgwm960. QTL for seed longevity were coincident with those for germination or seed vigour on chromosomes 1D or 5D. QTL for seedling growth were identified on chromosomes 4D and 5D. A candidate homologues search suggested the putative functions of the genes within the respective regions. These results offer perspectives for the selection of favourable alleles to improve certain vigour traits in wheat, although the negative effects of the same chromosome regions on other traits may limit their practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Accelerated ageing

CS:

Chinese Spring

DILs:

D genome introgression lines

IMA:

Interval mapping analysis

ITMI:

International Triticeae Mapping Initiative

LI:

Longevity index

LOD:

Logarithm of odds

PEG:

Polyethylene glycol

SMA:

Single marker analysis

QTL:

Quantitative trait locus (loci)

SGT:

Standard germination test

References

  • Al-Chaarani GR, Gentzbittel L, Wedzony M, Sarrafi A (2005) Identification of QTLs for germination and seedling development in sunflower (Helianthus annuus L.). Plant Sci 169:221–227

    Article  CAS  Google Scholar 

  • AOSA (1999) Rules for testing seeds. Association of official seed analysts. AOSA, Lincoln

    Google Scholar 

  • Aparicio N, Villegas D, Araus JL, Blanco R, Royo C (2002) Seedling development and biomass as affected by seed size and morphology in durum wheat. J Agric Sci 139:143–150

    Article  Google Scholar 

  • Appa Rao S, Kameswara Rao N, Mengesha MH (1993) Germinability and seedling vigor of pearl millet seeds harvested at different stages of maturity. Field Crops Res 32:141–145

    Article  Google Scholar 

  • Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for pre-prophase band formation and interact with centrin. The Plant Cell 20:2146–2159

    Article  CAS  PubMed  Google Scholar 

  • Balešević-Tubić S, Malenčić Ð, Tatić M, Miladinović J (2005) Influence of aging process on biochemical changes in sunflower seed. Helia 28:107–114

    Google Scholar 

  • Barzali M, Lohwasser U, Niedzielski M, Börner A (2005) Effects of different temperatures and atmospheres on seed and seedling traits in a long term storage experiment on rye (Secale cereale L.). Seed Sci Technol 33:713–721

    Google Scholar 

  • Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytol 148:277–286

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1994) Seeds—physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Börner A (2006) Preservation of plant genetic resources in the biotechnology era. Biotechnol J 1:1393–1404

    Article  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bultynck L, ter Steege MW, Schortemeyer M, Poot P, Lambers H (2004) From individual leaf elongation to whole shoot leaf area expansion; a comparison of three Aegilops and two Triticum species. Ann Bot 94:99–108

    Article  PubMed  Google Scholar 

  • Chen Q-J, Zhang L-Q, Yang Y-W, Xiang Z-G, Zeng Y-L, Peng Z-S, Liu D-C (2008) Dormancy spreads seed germination over a long period with a discontinuous procession in Aegilops tauschii, the D-genome donor species of bread wheat. Intern J Agric Res 3:77–82

    Article  Google Scholar 

  • Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753

    Article  CAS  PubMed  Google Scholar 

  • Dell’Aquila A, Corona MG, Di Tun M (1998) Heat-shock proteins in monitoring aging and heat-induced tolerance in germinating wheat and barley embryos. Seed Sci Res 8:91–98

    Google Scholar 

  • Delouche JC, Baskin CC (1973) Accelerated aging techniques necessary when the reason for the loss of viability for predicting the relative storability of seed lots. Seed Sci Technol 1:427–452

    Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  CAS  PubMed  Google Scholar 

  • Edney MJ, Mather DE (2004) Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross. J Cereal Sci 39:283–290

    Article  CAS  Google Scholar 

  • Ellis RH, Osei-Bonsu K, Roberts EH (1982) The influence of genotype, temperature and moisture on seed longevity in chickpea, cowpea and soybean. Ann Bot 50:69–82

    Google Scholar 

  • Ellis RH, Hong TD, Jackson MT (1993) Seed production environment, time of harvest, and the potential longevity of seeds of three cultivars of rice (Oryza sativa L.). Ann Bot 72:583–590

    Article  Google Scholar 

  • Gatford KT, Eastwood RF, Halloran GM (2002) Germination inhibitors in bracts surrounding the grain of Triticum tauschii. Funct Plant Biol 29:881–890

    Article  CAS  Google Scholar 

  • Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochem Polonica 51:609–624

    CAS  Google Scholar 

  • Halloran GM, Ogbonnaya FC, Lagudah ES (2008) Triticum (Aegilops) tauschii in the natural and artificial synthesis of hexaploid wheat. Austr J Agric Res 59:475–490

    Article  Google Scholar 

  • Hampton JG, TeKrony DM (1995) Handbook of vigour test methods. ISTA, Zurich

    Google Scholar 

  • Hincha DK, Meins F Jr, Schmitt JM (1997) β-1, 3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol 114:1077–1083

    CAS  PubMed  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7. doi 10.1186/1471-2164-7-149

  • Hrstková P, Chloupek O, Bébarová J (2006) Estimation of barley seed vigour with respect to variety and provenance effects. Czech J Genet Plant Breed 42:44–49

    Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • ISTA (2008) International rules for seed testing. International Seed Testing Association, Bassersdorf

    Google Scholar 

  • Kaeppler SM (1997) Quantitative trait locus mapping using sets of near-isogenic lines: relative power comparisons and technical considerations. Theor Appl Genet 95:384–392

    Article  Google Scholar 

  • Landjeva S, Neumann K, Lohwasser U, Börner A (2008) Molecular mapping of genomic regions associated with growth response to osmotic stress in wheat seedlings. Biol Plant 52:259–266

    Article  Google Scholar 

  • Lohwasser U, Röder MS, Börner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249

    Article  CAS  Google Scholar 

  • Lunn GD, Kettlewell PS, Major BJ, Scott RK (2002) Variation in dormancy duration of the U.K. wheat cultivar Hornet due to environmental conditions during grain development. Euphytica 126:89–97

    Article  Google Scholar 

  • Mares D, Mrva K, Tan MK, Sharp P (2002) Dormancy in white-grained wheat: progress towards identification of genes and molecular markers. Euphytica 126:47–53

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1947) The genome approach in radical wheat breeding. J Amer Soc Agron 39:1011–1026

    Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    Article  CAS  PubMed  Google Scholar 

  • Modarresi R, Rucker M, TeKrony DM (2002) Accelerating ageing test for comparing wheat seed vigour. Seed Sci Technol 30:683–687

    Google Scholar 

  • Murthy UMN, Prakash P, Kumar PP, Wendell Q, Sun WQ (2003) Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot 54:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Nagel M, Vogel H, Landjeva S, Buck-Sorlin G, Lohwasser U, Scholz U, Börner A (2009) Seed conservation in ex situ genebanks—genetic studies on longevity in barley. Euphytica (online first). doi 10.1007/s10681-009-9975-7

  • Nelson JC (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Pestsova E, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    Article  PubMed  Google Scholar 

  • Pieta Filho C, Ellis RH (1991) The development of seed quality in spring barley in four environments. I. Germination and longevity. Seed Sci Res 1:163–177

    Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Article  CAS  PubMed  Google Scholar 

  • Ranal MA, de Santana DG (2006) How and why to measure the germination process? Rev Brasil de Botanica 29:1–11

    Google Scholar 

  • Sasaki K, Fukuta Y, Sato T (2005) Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breed 124:361–366

    Article  Google Scholar 

  • Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2007) The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to Septoria tritici blotch (Mycosphaerella graminicola). Euphytica 154:249–254

    Article  Google Scholar 

  • Stefani A, Meletti P, Sbrana V, Onnis A (2000) Low temperature storage of caryopses of Triticum durum: viability and longevity. Ann Bot 85:403–406

    Article  Google Scholar 

  • ter Steege MW, den Ouden FM, Lambers H, Stam P, Peeters AJM (2005) Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis. Plant Physiol 139:1078–1094

    Article  CAS  PubMed  Google Scholar 

  • Tranbarger TJ, Forward BS, Misra S (2000) Regulation of NADPH-cytochrome P450 reductase expressed during Douglas-fir germination and seedling development. Plant Mol Biol 44:141–153

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Ramos MJ, de la Paz Sánchez M (2003) The cell cycle and seed germination. Seed Sci Res 13:113–130

    Article  Google Scholar 

  • Villar R, Veneklaas EJ, Jordano P, Lambers H (1998) Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. New Phytol 140:425–437

    Article  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. The Plant Cell 13:303–318

    Article  CAS  PubMed  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1997) The influence of photoperiod genes on the adaptability of European winter wheats. In: Braun H-J, Altay FR, Kronstad WE et al (eds) Wheat: prospects for global improvement. Kluwer Academic Press, Dordrecht, pp 517–526

    Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D-type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Zhang SQ, Yao QH, Peng RH, Xiong AS, Li X, Zhu WM, Zhu YY, Zha DS (2008) Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica 164:739–744

    Article  CAS  Google Scholar 

  • Zeng DL, Guo LB, Xu YB, Yasukumi K, Zhu LH, Qian Q (2006) QTL analysis of seed storability in rice. Plant Breed 125:57–60

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol. doi 10.1186/1471 2148-5-1

  • Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005) Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res 91:161–170

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Deutsche Forschungsgemeinschaft (Contracts BO 1423/10-1 and BO 1423/12-1). The authors thank R. Voss and A. Marlow for producing and handling the seeds and S. Pistrick for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Landjeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landjeva, S., Lohwasser, U. & Börner, A. Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica 171, 129–143 (2010). https://doi.org/10.1007/s10681-009-0016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-0016-3

Keywords

Navigation