Skip to main content

Advertisement

Log in

Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The dangers of a narrow genetic base of the world's major domesticated food crops have become a great global concern in recent decades. The efforts of the International Maize and Wheat Improvement Center (CIMMYT) to breed common wheat cultivars for resource poor farmers in the developing world (known as the Green Revolution wheats) has met with notable success in terms of improved yield, yield stability, increased disease resistance and utilization efficiency of agricultural inputs. However, much of the success was bought at the cost of an overall reduction in genetic diversity in the species; average Modified Roger's distances (MRD) within groups of germplasm fell from 0.64 in the landraces to a low of 0.58 in the improved lines in the 1980s. Recent efforts by CIMMYT breeders to expand the genetic base of common wheat has included the use of landraces, materials from other breeding programs, and synthetic wheats derived from wild species in the pedigrees of new advanced materials. The result, measured using SSR molecular markers, is a highly significant increase in the latent genetic diversity of recently developed CIMMYT breeding lines and cultivars compared to the original Green Revolution wheats (average MRD of the latest materials (0.63) is not significantly different from that of the landraces, as tested using confidence intervals). At the same time, yield and resistance to biotic and abiotic stresses, and end-use quality continue to increase, indicating that the Green Revolution continues to this day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CIMMYT:

International Maize and Wheat Improvement Center

CML:

CIMMYT maize inbred line

MRD:

modified Roger's distance

SH:

Shannon's diversity index

SHW:

synthetic hexaploid wheat

SSR:

simple sequence repeat

References

  • Almanza-Pinzon, I., M. Khairallah P. Fox & M. Warburton, 2003. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat genotypes. Euphytica 130: 77–86.

    Article  CAS  Google Scholar 

  • Braun, H.J., S. Rajaram & M. van Ginkel, 1996. CIMMYT's approach to breeding for wide adaptation. Euphytica 92: 175–183.

    Article  Google Scholar 

  • Brennan, J.P. & P.N. Fox, 1998. Impact of CIMMYT varieties on the genetic diversity of wheat in Australia, 1973–1993. Aust J Agric Res 49: 175–178.

    Article  Google Scholar 

  • Byerlee, D. & P. Moya, 1993. Impacts of International Wheat Breeding Research in the developing world, 1966–90. CIMMYT, Mexico D.F.

    Google Scholar 

  • Christiansen, M.J., S.B. Andersen & R. Ortiz, 2002. Diversity changes in intensively bred wheat germplasm during the 20th century. Mol Breed 9: 1–11.

    Article  Google Scholar 

  • Cox, T.S., 1998. Deepening the wheat gene pool. J Crop Production 1: 1–25.

    Article  Google Scholar 

  • Dreisigacker, S., P. Zhang, M.L. Warburton B. Skovmand D. Hoisington & A.E. Melchinger, 2005. Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45: 653–661.

    Article  CAS  Google Scholar 

  • Evans, L.T., 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press. Cambridge, UK.

    Google Scholar 

  • Evenson, R.E. & D. Gollin, 2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300: 758–762.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.R., 1972. Genetics of disaster. J Environ Qual 1: 212–215.

    Article  Google Scholar 

  • Kema, G.H.J., W. Lange & C.H. Silfhout, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85: 425–429.

    Article  Google Scholar 

  • Ladizinsky, G., 1984. Founder effect in crop plant evolution. Econ Bot 39: 191–199.

    Google Scholar 

  • Lage, J., M.L. Warburton J. Crossa B. Skovmand & S.B. Andersen, 2003. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134: 305–317.

    Article  CAS  Google Scholar 

  • Lage, J., B. Skovmand & S.B. Andersen, 2004. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J Econ Ent 97: 1065–1070.

    Article  CAS  Google Scholar 

  • Lage, J., B. Skovmand & S.B. Andersen, 2002. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J Econ Ent 96: 202–206.

    Article  Google Scholar 

  • Ma, H., R.P. Singh & A. Mujeeb-Kazi, 1995. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82: 117–124.

    Article  Google Scholar 

  • Maccaferri, M., M.C. Sanguineti P. Donini & R. Tuberosa, 2003. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107: 783–797.

    Article  PubMed  CAS  Google Scholar 

  • Mujeeb-Kazi, A., A. Cortes V. Rosas S. Cano J. Sanchez L. Juarez & R. Delgado, 2001. Genetic diversity for improving scab resistance in wheat. In: Proc Warren E Kronstad Symp CIMMYT, Mexico. pp. 126–129.

  • National Research Council, Committee on Genetic Vulnerability of Major Crops. 1972. Genetic Vulnerability of Major Crops. National Academy of Sciences. Washington, D.C.

    Google Scholar 

  • Pardo, L., D. Morales M. Salicrú & M.L. Menedéz, 1997. Large sample behavior of entropy measures when parameters are estimated. Communications in Statistics–Theory & Methods 26: 483–501.

    Article  Google Scholar 

  • Rajaram, S., N.E. Borlaug & M. van Ginkel, 2002. CIMMYT international wheat breeding. In: B.C. Curtis S. Rajaram & H. Gomez Macpherson (Ed.), Bread Wheat Improvement and Production. Plant Production and Protection Series No. 30, pp. 103–117. FAO, Rome.

    Google Scholar 

  • Rajaram, S. & M. van Ginkel, 2001. Mexico, 50 years of international wheat breeding. (Chapter 22). In: A.P. Bonjean & W.J. Angus (Eds.), The World Wheat Book, A History of Wheat Breeding, pp. 579–608. Lavoisier Publishing, Paris.

    Google Scholar 

  • Reif, J.C., P. Zhang S. Dreisigacker, M.L. Warburton M. van Ginkel D. Hoisington M. Bohn & A.E. Melchinger, 2005. Trends in genetic diversity during the history of wheat domestication and breeding. Theor Appl Genet 110: 859–864.

    Article  PubMed  CAS  Google Scholar 

  • Roussel, V., L. Leisova F. Exbrayat Z. Stehno & F. Balfourier, 2005. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111: 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof, M.A., K. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci 81: 8014–8018.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, C.E., 1948. A mathematical theory of communications. Bell Systems Tech J 27: 379–423.

    Google Scholar 

  • Singh, R.P. & S. Rajaram, 2002. Breeding for disease resistance in wheat. In: B.C. Curtis, S. Rajaram & H. Gomez Macpherson (Eds.). Bread Wheat Improvement and Production, Plant Production and Protection Series No. 30, pp. 141–156. FAO, Rome, Italy.

    Google Scholar 

  • Smale, M., I. Ortiz-Monasterio M. Warburton B. Skovmand M. Reynolds J. Crossa R. Singh & R. Trethowan, 2002. Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42: 1766–1779.

    Article  Google Scholar 

  • Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

    Article  PubMed  CAS  Google Scholar 

  • Trethowan, R.M., J. Crossa M. van Ginkel & S. Rajaram, 2001. Relationships among bread wheat international yield testing locations in dry areas. Crop Sci 41: 1461–1469.

    Article  Google Scholar 

  • Trethowan, R.M., M. van Ginkel K. Ammar J. Crossa, T.S. Payne B. Cukadar S. Rajaram & E. Hernandez, 2003. Associations amongtwenty years of international bread wheat yield evaluation environments. Crop Sci 43: 1698–1711.

    Article  Google Scholar 

  • Trethowan, R.M., M.P. Reynolds, K.D. Sayre & I. Ortiz-Monasterio, 2005. Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146: 404–413.

    Article  Google Scholar 

  • Van Beuningen, L.T. & R.H. Busch, 1997. Genetic diversity among North American spring wheat cultivars: II. Ancestor contributions to gene pools of different eras and regions. Crop Sci 37: 580–585.

    Article  Google Scholar 

  • Van der Plank, J.E., 1963. Plant Diseases: Epidemics and Control, pp. 349. Academic Press, New York.

    Google Scholar 

  • Vavilov, N.I., 1997. Five Continents. International Plant Genetic Resources Institute, Rome, Italy.

    Google Scholar 

  • Villareal, R.L., A. Mujeeb-Kazi E. Del Toro J. Crossa & S. Rajaram, 1994a. Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J Agron & Crop Sci 173: 307–317.

    Article  Google Scholar 

  • Villareal, R.L., A. Mujeeb-Kazi S. Rajaram & E. Del Toro, 1994b. Morphological variability in some synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. J Genet & Breed 48: 7–16.

    Google Scholar 

  • Villareal, R.L., K. Sayre O. Banuelos & A. Mujeeb-Kazi, 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci 41: 274.

    Article  Google Scholar 

  • Zhang, P., S. Dreisigacker, A.E. Melchinger M. van Ginkel D. Hoisington & M.L. Warburton, 2005. Quantifying novel sequence variation in CIMMYT synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 12: 1–10.

    Article  CAS  Google Scholar 

  • Zohary, D., J.H. Harlan & A. Vardi, 1969. The wild diploid progenitors of wheat and their breeding value. Euphytica 18: 58–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Warburton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warburton, M.L., Crossa, J., Franco, J. et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149, 289–301 (2006). https://doi.org/10.1007/s10681-005-9077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9077-0

Keywords

Navigation