Skip to main content
Log in

Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Semilooper resistant transgenic castor plants were produced through Agrobacterium-mediated genetic transformation method. Two castor cultivars, Jyothi and VP1 were transformed using the super-binary vector pTOK233 carrying gus A and hpt genes. Putative transformants were regenerated following selection on the hygromycin containing medium. GUS positive primary transformants, when subjected to Southern analysis, revealed stable integration of gus A into their genomes. In the T1 generation, a monogenic segregation ratio of 3 GUS positive: 1 GUS negative plants was observed. Furthermore, transformation experiments were carried out with the Agrobacterium pSB111 super-binary vector carrying a synthetic delta endotoxin gene cryIAb and the herbicide resistance gene bar both driven by cauliflower mosaic virus 35S promoter. Putative transformants were regenerated through selection on the phosphinothricin containing medium and Basta tolerant transformants were subjected to molecular analysis. PCR analysis revealed the presence of both bar and cryIAb genes in the Basta tolerant primary transformants. Southern analysis of PCR positive plants with cryIAb probe showed a 3 Kb band upon HindIII digestion and a > 6 Kb band with BamHI digestion, thus suggesting stable integration of cryIAb intact expression cassette and independent nature of the transformants. The primary transformants subjected to ELISA disclosed varied levels of Cry protein. These transgenics expressing cryIAb – when bioassayed against freshly hatched semilooper larvae – induced substantial (> 88%) insect mortality. Southern analysis of 2T1 plants revealed the presence of cryIAb gene, indicating stable inheritance of the transgene into the next generation. In T1, all the Southern-positive plants for cryIAb invariably exhibited tolerance to Basta, denoting co-segregation of both bar and cryIAb genes. Transgenics, expressing cryIAb exhibited ample resistance against the castor semilooper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang, M.J., E. Firoozabady, J. Klein, D. Deboer, V. Sekar, J.D. Kemp, E. Murray, T.A. Rocheleau, K. Rashka & G. Staffield, 1987. Application of a Bacillus thuringiensis crystal protein for insect control. In: C.J. Arntzen & C. Rayn (Eds.), Molecular Strategies for Crop Protection, pp. 345–353, Alan, R. Liss, New York.

    Google Scholar 

  • Aldemita, R.R. & T.K. Hodges, 1996. Agrobacterium tumefaciens-mediated transformation of Japonica and Indica rice varieties. Planta. 199: 612–617.

    Article  CAS  Google Scholar 

  • Aronson, A.I., W. Beckman & P. Dunn, 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50: 1–24.

    PubMed  CAS  Google Scholar 

  • Barteneva, R.V., 1986. Diseases and pests of castor and their control. In: V.A. Moshkin (Ed.), Castor, pp. 284, Oxonian Press Pvt Ltd. New Delhi.

    Google Scholar 

  • Barton, K., H. Whiteley & N.S. Yang, 1987. Bacillus thuringiensis δ-endotoxin in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Feitelson, J.S., J. Payne & L. Kim, 1992. Bacillus thuringiensis: insect and beyond. Bio/Technology 10: 271–275.

    Article  Google Scholar 

  • Finnegan, J. & D. McElroy, 1994. Transgenic inactivation: plants fight back! Bio/Technology 12: 883–888.

    Article  Google Scholar 

  • Gasser, C.S. & R.T. Fraley, 1989. Genetically engineering plants for crop improvement. Science. 244: 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  • Ghareyazie, B., F. Alinia, C.A. Menguito, L.G. Rubia, J.M. de Palma, E.A. Liwanag, M.B. Cohen, G.S. Khush & J. Bennet, 1997. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol. Breed. 3: 401–414.

    Article  CAS  Google Scholar 

  • Hiei, Y., S. Ohta, T. Komari & T. Kumashiro, 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J. 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E.E., G.L. Helmer, R.T. Fraley & M.D. Chilton, 1986. The hyper virulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168: 1291–1301.

    PubMed  CAS  Google Scholar 

  • Jefferson, R.A., T.A. Kavanagh & M.W. Bevan, 1987. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Kolte, S.J., 1995. Insect pests of castor In: Castor diseases and crop improvement. Shipra publications, Delhi. India. pp: 95.

    Google Scholar 

  • Lichtenstein, C. & J. Draper, 1985. Genetic engineering of plants. In: D.M. Glover (Ed.), DNA cloning, a practical perspective, vol II, pp. 67–140, IRL press, Washington DC.

    Google Scholar 

  • Narayanan, E.S., 1959. Insect pests of castor. In: L.G. Kulkarni (Ed.),‘Castor’. Indian Central Oilseeds committee, Hyderabad, Chap, 13.

    Google Scholar 

  • Ramesh, S., D. Nagadhara, I.C. Pasalu, A. Padma Kumari, N.P. Sarma, V.D. Reddy, & K.V. Rao, 2004. Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J Biotechnol. 111: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, K.R.K., N. Ramaswamy, & B. Bahadur, 1987. Cross incompatibility between Ricinus and Jatropha, Plant Cell Incompatibility Newsletter 19: 60–65.

    Google Scholar 

  • Sambrook, J. & D.W. Russel, 2001. Molecular Cloning, a laboratory manual. 3ed. Vol. 1–3. Cold Spring Harbor laboratory Press, Cold spring harbor, New York.

    Google Scholar 

  • Sanghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, population dynamics. Proc. Nat. Acad. Sci. USA. 81: 8014–8018.

    Google Scholar 

  • Sathaiah, V. & T.P. Reddy, 1985. Seed protein profiles of Castor (Ricinus communis l.) and some Jatropha species, Genetica Agraria 39: 35–43.

    CAS  Google Scholar 

  • Smith, R.H. & E.E. Hood, 1995. Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci. 35: 301–309.

    Article  Google Scholar 

  • Sneh, B. & S. Gross, 1983. Biological control of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae) in cotton and alfalfa fields, using a preparation of Bacillus thuringiensis ssp. entomocidus supplemented with adjuvants. Z. Angew. Entomol. 96: 418–424.

    Google Scholar 

  • Stewart, Jr. C.N., M.J. Adang, J.N. All, H.R. Boerma, G. Cardineau, D. Tucker & W.A. Parrott, 1996. Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIA(c) gene. Plant Physiol. 112: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Sujatha, M. & T.P. Reddy, 1998. Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep. 17: 561–566,.

    Article  CAS  Google Scholar 

  • Sujatha, M. & M. Sailaja, 2005. Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep. 23: 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Vaeck, M., A. Reynaerts, H. Hoftey, S. Jansens, M. De Beuckleer, C. Dean, M. Zabeau, M. Van Montagu, & J. Leemans, 1987. Transgenic plants protected from insect attack. Nature. 327: 33–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malathi, B., Ramesh, S., Rao, K.V. et al. Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147, 441–449 (2006). https://doi.org/10.1007/s10681-005-9043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9043-x

Keywords

Navigation