Skip to main content
Log in

Mechanisms of the target response to magnetic fields and their correlation with the biological complexity

  • Original Paper
  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

The present contribution points to the mechanisms of bioresponse caused by magnetic fields, paying attention to their action not only at the ionic, molecular or macromolecular levels but also at the levels of cells, tissues and organisms. The significance of findings concerning the magnetic-field dependence of cell proliferation, necrosis or apoptosis and cell volume or membrane fluidity is judged by comparing the results obtained in a solenoid, where a magnetic field can be added to the geomagnetic field, with those obtained in a magnetically shielded room, where the magnetic fields can be attenuated or null. This comparative criterion was particularly required when the differences found between the data provided by experimental samples and the data provided by control samples are small per se, as observed in estimating the magnetic-field dependence of expression of single genes or the magnetic-field dependence of total genome replication, transcription and translation. The report analyzes the magnetic-field dependence of the interactions between host animal cells and infecting bacteria and, in the framework of studies on the origin and adaptation of life on Earth, theoretical insights paving the way to elucidating the mechanisms of magnetic-field interactions with biosystems of different orders of organization are considered from the viewpoint of the “biological windows” thermodynamics. Thus, analogously to what is known for ionizing radiations, an inverse correlation emerged between the intensity of given magnetic fields and the biological complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, R. K. (1998). Extremely low frequency electromagnetic fields do not interact directly with DNA. Bioelectromagnetics, 19, 136–137.

    Article  CAS  Google Scholar 

  • Agulova, A. P., Opalinskaja, A. M., & Kirjanov, V. C. (1989). Specific features of reactions of different objects sensitive to change in cosmophysical factors and action of weak electromagnetic fields. In M. N. Gnevishev (Ed.), Problems of cosmic biology (Vol. 65, pp. 160–181). Leningrad: Nauka.

  • Binhi, V. N. (1995). Nuclear spins in primary mechanisms of biomagnetic effects. Biofizika, 40, 671–685.

    Google Scholar 

  • Binhi, V. N. (1997). Mechanism of magnetosensitive ion binding by some proteins. Biofizika, 42, 338–342.

    Google Scholar 

  • Blanchard, J. P., & Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 15, 217–238.

    Article  CAS  Google Scholar 

  • Blank, M., & Goodman, R. (1997). Do electromagnetic fields interact directly with DNA? Bioelectromagnetics, 18, 111–115.

    Article  CAS  Google Scholar 

  • Chiabrera, A., Bianco, B., Kaufman, J. J., & Pilla, A. A. (1991). Quantum dynamics of ions in molecular crevices under electromagnetic exposure. In C. T. Brighton & S. R. Pollak (Eds.), Electromagnetics in biology and medicine (pp. 21–26). San Francisco: San Francisco Press.

  • Cridland, N. A., Haylock, R. G. E., & Saunders, R. D. (1999). 50 Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts. Bioelectromagnetics, 20, 446–452.

    Article  CAS  Google Scholar 

  • Delgado, J. M., Leal, J., Moneagudo, L., & Gracia, G. (1982). Embryological changes induced by weak ELF EMF. Journal of Anatomy, 134, 533–551.

    CAS  Google Scholar 

  • Ding, G. R., Wake, K., Taki, M., & Miyakoshi, J. (2001). Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to electric field. Life Science, 68, 1041–1046.

    Article  CAS  Google Scholar 

  • Edmunds, D. T. (1993). Larmor procession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochemistry and Bioenergetics, 30, 3–12.

    Article  Google Scholar 

  • Elkind, M. M., Sutton, H., & Moses, W. B. (1961). Post-irradiation survival kinetics of mammalian cell growth in culture. Journal of Cellular and Comparative Physiology, 58, 113–134.

    Article  Google Scholar 

  • El-Lakkani, A. (2001). Dielectric response of some biological tissues. Bioelectromagnetics, 22, 272–279.

    Article  CAS  Google Scholar 

  • Emura, R., Ashida, N., Higashi, T., & Takeuchi, T. (2001). Orientation of bull sperms in static magnetic fields. Bioelectromagnetics, 22, 60–65.

    Article  CAS  Google Scholar 

  • Eremenko, T., Esposito, C., Pasquarelli, A., Pasquali, E., & Volpe, P. (1997). Cell-cycle kinetics of Friend erythroleukemia cells in a magnetically shielded room and in a low-frequency/low-intensity magnetic field. Bioelectromagnetics, 18, 58–66.

    Article  CAS  Google Scholar 

  • Fanelli, C., Coppola, S., Barone, R., Colussi, C., Gualardi, G., Volpe, P., & Ghibelli, L. (1999). Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. Federation of American Societies for Experimental Biology Journal, 13, 95–102.

    CAS  Google Scholar 

  • Gidon-Jeangirard, C., Solito, E., Hofman, A., Russo-Marie, F., Freyssinet, J. M., & Martinez, M. C. (1999). Annexin counteracts apoptosis while inducing Ca2+ influx in human lymphocytic T cells. Biochemical and Biophysical Research Communications, 265, 265–215.

    Article  Google Scholar 

  • Golfert, F., Hoter, A., Thrummler, M., Bauer, H., & Funk, R. H. W. (2001). Extremely low frequency electromagnetic fields and heat shock can increase microvesicle motility in astrocytes. Bioelectromagnetics, 22, 71–78.

    Article  CAS  Google Scholar 

  • Grimaldi, S., Pozzi, D., Lisi, A., Rieti, S., Nanni, V., Ravagnan, G., Giuliani, L., Eremenko, T., & Volpe, P. (2000). Influence of the magnetic field on the tadpole metamorphosis. International Journal of Radiation Medicine, 1, 96–103.

    Google Scholar 

  • Herada, S., Yamada, S., Kuramela, O., Gunji, Y., Kawasaki, M., Miyakawa, T., Yonekura, H., Sakurai, S., Bessho, K., Hosono, R., & Yamamoto, H. (2001). Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in␣vitro and on a cell-free mismatch repair. Bioelectromagnetics, 22, 260–268.

    Article  Google Scholar 

  • Kislovsky, L. D. (1982). Reaction of biological system to weak low-frequency electromagnetic fields adequate for it. In A. M. Ugolev (Ed.), Problems of cosmic biology (Vol. 43, pp. 148–166).Moscow: Nauka.

    Google Scholar 

  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. Journal of Biological Physics, 9, 99–100.

    Article  Google Scholar 

  • Liburdy, R. P. (1992). Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. Federation of American Societies for Experimental Biology Letters, 301, 53–59.

    CAS  Google Scholar 

  • Lino, M., & Okuda, Y. (2001). Osmolality dependence of erhythrocyte sedimentation and aggregation in strong magnetic field. Bioelectromagnetics, 22, 46–52.

    Article  Google Scholar 

  • Markkanen, A., Juutilainen, J., Lang, S., Pelkonen, J., Rytomaa, T., & Naarala, J. (2001). Effects of 50 Hz magnetic field on cell-cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation. Bioelectromagnetics, 22, 345–350.

    Article  CAS  Google Scholar 

  • Markov, M. S. (2004). Myosin phosphorylation—A plausible toole for studying biological windows. In P. Kostarakis (Ed.), Biological effects of EMFs (Vol. I, pp. 1–9). Kos: University of Ioannina and NCSR Demokritos Publishers.

  • Mirabolghasemi, G., & Azarnia, M. (2002). Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics, 23, 416–420.

    Article  Google Scholar 

  • Nindi, G., Hughes, E. F., Johnson, M. T., Vesper, D. N., & Balcavage, W. X. (2002). Effect of ultraviolet B radiation and 100 Hz electromagnetic fields on proliferation and DNA synthesis of Jurkat cells. Bioelectromagnetics, 23, 455–463.

    Article  Google Scholar 

  • Obo, M., Konishi, S., Otaka, Y., & Kitamura, S. (2002). Effect of magnetic field exposure on calcium channel currents using patch clamp technique. Bioelectromagnetics, 23, 306–314.

    Article  CAS  Google Scholar 

  • Piccardi G (1962). The chemical basis of medical climatology. New York: Springer.

    Google Scholar 

  • Shahidain, R., Mullins, R. D., & Sisken, J. E. (2001). Calcium spiking and baseline calcium levels in ROS 17/2.8 cells exposed to extremely low frequency electromagnetic fields (ELF EMF). International Journal of Radiation Biology, 77, 241–248.

    Article  CAS  Google Scholar 

  • Testylier, G., Tonduli, L., Malablau, R., & Debouzy, J. C. (2002). Effects of exposure to low level radiofrequency fields on acethylcholine release in hippocampus of freely moving rats. Bioelectromagnetics, 23, 249–255.

    Article  CAS  Google Scholar 

  • Timofeef-Ressovsky, W., & Zimmer, K. G. (1947). Trefferprinzip in der Biologie. Leipzig: S. Hirzel Verlag.

    Google Scholar 

  • Volobuev, A. N., Zhukov, B. N., Bakhito, A. U., Ovcinnikov, E. L., & Trufanov, I. A. (1993). Influence of constant magnetic field and laser emission on neurophysiological processes. Biofizika, 38, 372–377.

    CAS  Google Scholar 

  • Volpe, P. (1999). Introduzione alla Biofisica delle Radiazioni (pp. 1–256). Venice: Unesco Office Publishers.

    Google Scholar 

  • Volpe, P. (2003). Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochemical & Photobiological Sciences, 2, 637–648.

    Article  CAS  Google Scholar 

  • Volpe, P., & Eremenko, T. (2005a). Genome stability vs. deprivation or enrichment of the geomagnetic field. The Environmentalist, 25, 72–82.

    Google Scholar 

  • Volpe, P., & Eremenko, T. (2005b). Gene expression in a Space-simulating magnetically shielded environment. The Environmentalist, 25, 83–92.

    Article  Google Scholar 

  • Volpe, P., Cappelli, G., Mariani, F., Serafino, A., & Eremenko, T. (2002). Macrophage sensitivity to static magnetic fields. In P. Kostarakis (Ed.), Biological effects of EMFs (Vol. 1, pp. 374–381). Rhodes: University of Ioannina and NCSR Demokritos Publishers.

    Google Scholar 

  • Volpe, P., Parasassi, T., Esposito, C., Ravagnan, G., Giusti, A. M., Pasquarelli, A., & Eremenko, T. (1998). Cell membrane lipid molecular dynamics in a solenoid vs. a magnetically shielded room. Bioelectromagnetics, 19, 107–111.

    Article  CAS  Google Scholar 

  • Walleczeck, J. (1992). Electromagnetic field effect on cells of the immune system: The role of calcium signaling. Federation of American Societies for Experimental Biology Journal, 6, 3177–3185.

    Google Scholar 

  • Wang, X., Becker, F. F., & Gascoyne, P. R. C. (2002). Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation. Biochimica et Biophysica Acta, 1564, 412–420.

    Article  CAS  Google Scholar 

  • Zhadin, M. N. (1996). Action of magnetic fields on the ion motion in a macromolecule: Theoretical analysis. Biophyzika, 41, 832–850.

    CAS  Google Scholar 

  • Zhirblis, V. E. (1989). On reproducibility of heliobiological experiments. In M. N. Gnevishev (Ed.), Problems of cosmic biology (Vol. 65, pp. 145–160). Leningrad: Nauka.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Volpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, P., Eremenko, T. Mechanisms of the target response to magnetic fields and their correlation with the biological complexity. Environmentalist 27, 387–393 (2007). https://doi.org/10.1007/s10669-007-9085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9085-9

Keywords

Navigation