Skip to main content
Log in

Cobalt and zinc removal from aqueous solution by chemically treated bentonite

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Natural bentonite was treated by hydrochloric, nitric, and phosphoric acids followed by washing with sodium hydroxide in order to enhance its adsorption capacity. The sample that treated with hydrochloric acid followed by further treatment with NaOH showed the highest cation exchange capacity with a value of 51.20 meq/100 g. The zero-point of charge for this sample was found to be 4.50. Adsorption isotherms for both cobalt and zinc were fitted using Langmuir, Freundlich, and Redlich-Peterson and showed an adsorption capacity of 138.1 mg Co2+ and 202.6 mg Zn2+ per gram of treated sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Degs, Y., Tutunjy, M., & Shawabkeh, R. (2000). The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+ from water. Separation Science and Technology, 35, 2299–2310.

    Article  CAS  Google Scholar 

  • Al-Omari, H. (2003). Study of the adsorption of Ni2+ and Cu2+ by Tripoli. Mutah Lil-Buhuth wad-Dirasat, 18, 77–94.

    Google Scholar 

  • Alvarez-Ayuso, E., & Garcia-Sanchez, A. (2003). Removal of heavy metals from waste water by natural and Na-exchanged bentonites. Clays and Clay Minerals, 51, 475–480.

    Article  CAS  Google Scholar 

  • Appel, G., Ma, L., Rhue, R., & Kennelley, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113, 77–93.

    Article  CAS  Google Scholar 

  • Bhattacharyya, D., Hestekin, J., Brushaber, P., Cullen, L., Bachas, L., & Sikdar, S. (1998). Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science, 141, 121–135.

    Article  CAS  Google Scholar 

  • Barbier, F., Duc, G., & Petit-Ramel, M. (2000). Adsorption of lead and cadmium ions from aqueous solutions to the montmorillonite/water interface. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 166, 153–159.

    Article  CAS  Google Scholar 

  • Chen, G., Dussert, B., & Suffet, I. (1997). Evaluation of granular activated carbons for removal of methyllisoborneol to below odor threshold concentrations in drinking water. Water Research, 31, 1155–1163.

    Article  CAS  Google Scholar 

  • Chiou, M., & Li, H. (2002). Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials, 93, 233–248.

    Article  CAS  Google Scholar 

  • Chu, H., & Hashim, M. (2003). Kinetic studies of copper(II) and nickel(II) adsorption by oil palm ash. Journal of Industrial and Engineering Chemistry, 9, 163–167.

    CAS  Google Scholar 

  • Corey, R. B. (1981). Adsorption vs. precipitation. In: M. A. Anderson & A. J. Rubin (Eds.), Adsorption of inorganics at solid–liquid interfaces (pp. 161–182). Ann Arbor, MI: Annals of Arbor Science Publisher.

  • Freundlich, H. (1906). Over the adsorption in solution. Journal for Physical Chemistry, 57A, 385–470.

    Google Scholar 

  • Ho, Y., & McKay, G. (2000). The kinetics of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742.

    Article  CAS  Google Scholar 

  • James, R., & Healy, T. (1972). Adsorption of hydrolysable metal ions at the oxide—water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems. Journal of Colloid and Interface Science, 40, 53–64.

    Article  CAS  Google Scholar 

  • Jandova, J., Maixner, J., & Grygar, T. (2002). Processing of zinc galvanic waste sludge by selective precipitation. Ceramics, 46, 52–55.

    CAS  Google Scholar 

  • Kahr, G., & Madsen, F. (1995). Determination of cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue sorption. Applied Clay Science, 9, 327–363.

    Article  CAS  Google Scholar 

  • Karahan, S., Yurdakoç, M., Seki, Y., & Yurdakoç, K. (2006). Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interface Science, 293, 36–42.

    Article  CAS  Google Scholar 

  • Kaya, A., & Oren, A. (2005). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials B, 125, 183–189.

    Article  CAS  Google Scholar 

  • Khan, S., Riaz-ur-Rehhman, & Khan, M. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15, 255–312.

  • Konishi, S., Saito, K., Furusaki, S., & Takanobu, S. (1996). Binary metal ion sorption during permeation through chelating porous membranes. Journal of Membrane Science, 111, 1–6.

    Article  CAS  Google Scholar 

  • Kosmulski, M. (2002). The pH-dependent surface charging and the points of zero charge. Journal of Colloid and Interface Science, 253, 77–87.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295.

    Article  CAS  Google Scholar 

  • Lin, S., & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials B, 92, 315–326.

    Article  CAS  Google Scholar 

  • Manning, B., & Goldberg, S. (1997). Adsorption and stability of arsenic at the clay mineral-water interface. Environmental Science and Technology, 31, 2005–2011.

    Article  CAS  Google Scholar 

  • Mavrov, V., Erwe, T., Blöcher, C., & Chmiel, H. (2003). Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater. Desalination, 157, 97–104.

    Article  CAS  Google Scholar 

  • Murray, J. (1975). The interaction of colbalt with hydrous manganese dioxide. Geochimica et Cosmochima Acta, 39, 635–647.

    Article  CAS  Google Scholar 

  • Noble, R. (1995). Membrane Separations Technology: Principles and applications. Elsevier.

  • Oren, A., & Kaya A. (2006). Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. Journal of Hazardous Material B, 131, 59–65.

    Article  Google Scholar 

  • Rashed, M. (2001). Lead removal from contaminated water using mineral adsorbents. The Environmentalists, 21, 187–195.

    Article  Google Scholar 

  • Sengupta, A. (1997). Ion Exchange Technology. Pennsylvania: Technomic Publ. Co. Inc.

    Google Scholar 

  • Shawabkeh, R., Rockstraw, D., & Bhada, R. (2002). Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon, 40, 781–786.

    Article  CAS  Google Scholar 

  • Sheta, A., Falatah, A., Al-Sewailem, M., Khaled, E., & Sallam, A. (2003). Sorption characteristics of␣zinc and iron by natural zeolite and bentonite. Microporous and Mesoporous Materials, 61, 127–136.

    Article  CAS  Google Scholar 

  • Smiciklas, I., Milonjic, S., Pfendt, P., & Raicevic, S. (2000). The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatitew. Separation and Purification Technology, 18, 185–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyad A. Shawabkeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shawabkeh, R.A., Al-Khashman, O.A., Al-Omari, H.S. et al. Cobalt and zinc removal from aqueous solution by chemically treated bentonite. Environmentalist 27, 357–363 (2007). https://doi.org/10.1007/s10669-007-9048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9048-1

Keywords

Navigation