Skip to main content

Advertisement

Log in

Green building aspects in Bangladesh: A study based on experts opinion regarding climate change

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Climate change is affecting the life and livelihood of people all over the world, where Bangladesh is one of the most susceptible countries. Anthropogenic climate change is one of the consequences of an increase in the emission of greenhouse gases. Green building practice may be helpful in reducing the emissions. Focusing on the importance of green building and climate change, this study was conducted in Bangladesh to understand the potentiality of green building practice as an adaptation to climate change. To fulfill the objective, 21 key informant interviews and four in-depth interviews were conducted with experts from various government and non-government sectors in Bangladesh. From the findings, it has been revealed that design and construction efficiency, and reduction of energy use are the highest ranked indicators of green building, furthermore, environment-friendly design and construction, and long-term resource efficiency aspects should be included in the design and construction practices of Bangladesh. The consensus is that, buildings should be designed to be more energy-efficient. Besides, the efficient use of roof gardens, climate change mitigation, and long-term resiliencies are identified as the most highlighted sub-indicators from the economic and social perspectives of green building benefits in Bangladesh. Although several organizations are working on green buildings in Bangladesh, a majority of the experts (57%) said the evaluating tools are not in place yet. Besides, public perceptions toward a new change and a lack of regulatory authorities are marked as major obstacles for implementing green building practices. Enforcing fair rules and regulations may aid in overcoming these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Affolderbach, J., Schulz, C., & Braun, B. (2018). Green Building as Urban Climate Change Strategy (pp. 3–14). https://doi.org/10.1007/978-3-319-77709-2_1.

  • Ahn, Y. H., Pearce, A. R., Wang, Y., & Wang, G. (2013). Drivers and barriers of sustainable design and construction: The perception of green building experience. International Journal of Sustainable Building Technology and Urban Development, 4(1), 35–45.

    Article  Google Scholar 

  • Al-Ruzouq, R., Shanableh, A., Merabtene, T., Siddique, M., Khalil, M. A., Idris, A., & Almulla, E. (2019). Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. CATENA, 173, 511–524. https://doi.org/10.1016/j.catena.2018.10.037

    Article  Google Scholar 

  • Alam, M. Z., Armin, E., Haque, M., Kayesh, J. H. E., & Qayum, A. (2018). Air pollutants and their possible health effects at different locations in dhaka city. Journal of Current Chemical Pharmaceutical Sciences, 8(1), 111.

    CAS  Google Scholar 

  • Alam, S. S., Alam, A. T. M., Rehman, M. F., & Rahman, S. (2016). Building climate resilience to Noapara town: a coastal urban centre of Bangladesh.

  • Arefin, R. (2020). Groundwater potential zone identification using an analytic hierarchy process in Dhaka City, Bangladesh. Environmental Earth Sciences, 79, 1–16.

    Article  Google Scholar 

  • Bachelet, D., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2001). Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems, 4(3), 164–185. https://doi.org/10.1007/s10021-001-0002-7

    Article  CAS  Google Scholar 

  • Bera, R., & Maiti, R. (2021). Multi hazards risk assessment of Indian Sundarbans using GIS based Analytic Hierarchy Process (AHP). Regional Studies in Marine Science, 44, 101766.

    Article  Google Scholar 

  • Brown, M. A., & Southworth, F. (2008). Mitigating climate change through green buildings and smart growth. Environment and Planning A, 40(3), 653–675.

    Article  Google Scholar 

  • Brown, M. A., Southworth, F., & Stovall, T. K. (2005). Towards a Climate-Friendly Built Environment. Center for Climate and Energy Solutions.

  • Chan, E. H. W., Qian, Q. K., & Lam, P. T. I. (2009). The market for green building in developed Asian cities—The perspectives of building designers. Energy Policy, 37(8), 3061–3070.

    Article  Google Scholar 

  • Chang, Y.-T., & Hsieh, S.-H. (2020). A review of building information modeling research for green building design through building performance analysis. Journal of Information Technology in Construction, 25, 1–40. https://doi.org/10.36680/j.itcon.2020.001

    Article  Google Scholar 

  • Cheng, Y.-H., Lin, C.-C., & Hsu, S.-C. (2015). Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions. Building and Environment, 87, 274–282. https://doi.org/10.1016/j.buildenv.2014.12.025

    Article  Google Scholar 

  • Chowdhury, M. A., Hasan, M. K., Hasan, M. R., & Younos, T. B. (2020). Climate change impacts and adaptations on health of internally displaced people (IDP): An exploratory study on coastal areas of Bangladesh. Heliyon, 6(9), e05018. https://doi.org/10.1016/j.heliyon.2020.e05018

    Article  Google Scholar 

  • Compant, S., Van Der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology. https://doi.org/10.1111/j.1574-6941.2010.00900.x

    Article  Google Scholar 

  • Coulibaly, J. Y., Mbow, C., Sileshi, G. W., Beedy, T., Kundhlande, G., & Musau, J. (2015). Mapping vulnerability to climate change in Malawi: Spatial and social differentiation in the Shire River Basin. American Journal of Climate Change, 04(03), 282–294. https://doi.org/10.4236/ajcc.2015.43023

    Article  Google Scholar 

  • Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., & Machmuller, M. (2009). Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7(2), 73–78. https://doi.org/10.1890/070219

    Article  Google Scholar 

  • Dean, B., Dulac, J., Petrichenko, K., & Graham, P. (2016). Towards zero-emission efficient and resilient buildings.: Global Status Report. Global Alliance for Buildings and Construction (GABC).

  • Dewan, A. M., Kabir, M. H., Nahar, K., & Rahman, M. Z. (2012). Urbanisation and environmental degradation in Dhaka Metropolitan Area of Bangladesh. International Journal of Environment and Sustainable Development, 11(2), 118. https://doi.org/10.1504/IJESD.2012.049178

    Article  Google Scholar 

  • Durdyev, S., & Ihtiyar, A. (2020). Attitudes of Cambodian Homebuyers Towards the Factors Influencing Their Intention to Purchase Green Building (pp. 147–160). https://doi.org/10.1007/978-3-030-24650-1_8.

  • Durdyev, S., Ismail, S., Ihtiyar, A., Abu Bakar, N. F. S., & Darko, A. (2018). A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. Journal of Cleaner Production, 204, 564–572. https://doi.org/10.1016/j.jclepro.2018.08.304

    Article  Google Scholar 

  • Dwaikat, L. N., & Ali, K. N. (2018). The economic benefits of a green building—Evidence from Malaysia. Journal of Building Engineering, 18, 448–453. https://doi.org/10.1016/j.jobe.2018.04.017

    Article  Google Scholar 

  • Farhana, F., Shuvo, I. U. K., & Islam, N. (2019). The essence of Urban form and its Relationship with Urban Aesthetics: A case from Rajshahi City, Bangladesh. Proceedings of the 55th ISOCARP World Planning Congress.

  • FashionatingWorld. (2016). Bangladesh: 10 units top 25 most eco-friendly factories in the world.

  • Gall, E., Darling, E., Siegel, J. A., Morrison, G. C., & Corsi, R. L. (2013). Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes. Atmospheric Environment, 77, 910–918. https://doi.org/10.1016/j.atmosenv.2013.06.014

    Article  CAS  Google Scholar 

  • Giesekam, J., Barrett, J., Taylor, P., & Owen, A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy and Buildings, 78, 202–214. https://doi.org/10.1016/j.enbuild.2014.04.035

    Article  Google Scholar 

  • Gluch, P., Gustafsson, M., & Thuvander, L. (2009). An absorptive capacity model for green innovation and performance in the construction industry. Construction Management and Economics, 27(5), 451–464.

    Article  Google Scholar 

  • GOB, P. D. (2011). Ministry of Power, Energy and Mineral Resources. In Renewable energy in Bangladesh.

  • Gou, Z. (2020). The Shift of Green Building Development in China from a Voluntary to Mandatory Approach (pp. 1–21). https://doi.org/10.1007/978-3-030-24650-1_1.

  • Goussous, J., & Al-Refaie, A. (2014). Evaluation of a green building design using LCC and AHP techniques. Life Science Journal, 11(8s), 29–40.

    Google Scholar 

  • Green Building Insider. (2018). The environmental benefits of green building.

  • Hasekioğulları, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179.

    Article  Google Scholar 

  • Hasnat, M. A., Chowdhury, M. A., & Abdullah-Al-Mamun, M. M. (2020). Perception of people on climate-induced migration issues in coastal areas of Bangladesh. Migration and Development. https://doi.org/10.1080/21632324.2020.1742504

    Article  Google Scholar 

  • Hassan, M. M., & Nazem, M. N. I. (2016). Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. Environment, Development and Sustainability, 18(3), 697–716. https://doi.org/10.1007/s10668-015-9672-8

    Article  Google Scholar 

  • Hassan, M., Rupam, T. H., & Habib, W. B. (2016). Green building: An emerging technology for the energy crisis of Bangladesh. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 2, 1.

    Google Scholar 

  • Hayles, C. S., & Kooloos, T. (2005). The challenges and opportunities for sustainable building practices. Benefits, 2.

  • HBRI. (2020). Housing & Building Research Institute. http://www.hbri.gov.bd/.

  • He, B.-J., Zhao, D.-X., & Gou, Z. (2020). Integration of Low-Carbon Eco-City, Green Campus and Green Building in China. Green building in developing countries (pp. 49–78). Springer.

    Chapter  Google Scholar 

  • Heidari, N., & Pearce, J. M. (2016). A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages. Renewable and Sustainable Energy Reviews, 55, 899–908.

    Article  Google Scholar 

  • Hossen, M. A., Chowdhury, M., Hans, A., Tagoe, C. A., Allan, A., Nelson, W., Patel, A., Mondal, M. S., Salehin, M., Quaye, R. M., & Das, S. (2019). Governance challenges in addressing climatic concerns in Coastal Asia and Africa. Sustainability, 11(7), 2148. https://doi.org/10.3390/su11072148

    Article  Google Scholar 

  • Houghton, A., & Castillo-Salgado, C. (2020). Analysis of correlations between neighborhood-level vulnerability to climate change and protective green building design strategies: A spatial and ecological analysis. Building and Environment, 168, 106523. https://doi.org/10.1016/j.buildenv.2019.106523

    Article  Google Scholar 

  • Huo, X. (2020). Analytical review of green building Stakeholders in China. Green building in developing countries (pp. 23–32). Springer.

    Chapter  Google Scholar 

  • Huovila, P., Ala-Juusela, M., Melchert, L., Pouffary, S., Cheng, C.-C., Ürge-Vorsatz, D., Koeppel, S., Svenningsen, N., & Graham, P. (2009). Buildings and climate change: Summary for decision-makers. United Nations Environment Programme.

    Google Scholar 

  • Hwang, B., & Tan, J. S. (2012). Green building project management: Obstacles and solutions for sustainable development. Sustainable Development, 20(5), 335–349.

    Article  Google Scholar 

  • IPCC. (2007a). Climate change 2007: Synthesis report. Cambridge University Press.

    Google Scholar 

  • IPCC. (2007b). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assess-ment Report of the Intergovernmental Panel on Climate Change. In Geneva, Switzerland.

  • IPCC. (2018). Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Geneva.

  • Islam, M. A. (2019). Factors influencing participation intention for improving river water quality: An empirical evidence from Dhaka. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3697071

    Book  Google Scholar 

  • Kamal, M., & Gani, M. O. (2016). A critical review on importance of eco-structure building or green building in Bangladesh. International Journal of Business Administration, 7(3), 166–180.

    Google Scholar 

  • Karmokar, S. (2020). Eco-friendly factories are growing.

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.

    Article  Google Scholar 

  • Khadka, B. (2020). Rammed earth, as a sustainable and structurally safe green building: A housing solution in the era of global warming and climate change. Asian Journal of Civil Engineering, 21(1), 119–136. https://doi.org/10.1007/s42107-019-00202-5

    Article  Google Scholar 

  • Kibert, C. J. (2016). Sustainable construction: Green building design and delivery. John Wiley & Sons.

    Google Scholar 

  • Kiron, M. I. (2021). List of LEED Certified Green Garment Factories in Bangladesh.

  • Kovacs, J. M., Malczewski, J., & Flores-Verdugo, F. (2004). Examining local ecological knowledge of hurricane impacts in a mangrove forest using an analytical hierarchy process (AHP) approach. Journal of Coastal Research, 203, 792–800.

    Article  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105–129. https://doi.org/10.1080/10106049.2016.1232314

    Article  Google Scholar 

  • Lee, T., & Koski, C. (2012). Building green: Local political leadership addressing climate change. Review of Policy Research, 29(5), 605–624.

    Article  Google Scholar 

  • Leichenko, R. (2011). Climate change and urban resilience. Current Opinion in Environmental Sustainability, 3(3), 164–168. https://doi.org/10.1016/j.cosust.2010.12.014

    Article  Google Scholar 

  • LGED. (2020). Local Government Engineering Department, Government of the People’s Republic of Bangladesh. http://www.lged.gov.bd/.

  • Li, Y. Y., Chen, P.-H., Chew, D. A. S., & Teo, C. C. (2014). Exploration of critical resources and capabilities of design firms for delivering green building projects: Empirical studies in Singapore. Habitat International, 41, 229–235. https://doi.org/10.1016/j.habitatint.2013.08.008

    Article  Google Scholar 

  • Lu, T., Gupta, A., Jayal, A. D., Badurdeen, F., Feng, S. C., Dillon, O. W., & Jawahir, I. S. (2011). A framework of product and process metrics for sustainable manufacturing. Advances in sustainable manufacturing (pp. 333–338). Springer.

    Chapter  Google Scholar 

  • Lucon, O., Ürge-Vorsatz, D., Ahmed, A. Z., Akbari, H., Bertoldi, P., Cabeza, L. F., Eyre, N., Gadgil, A., Harvey, L. D., & Jiang, Y. (2014). Buildings. Cambridge University Press.

    Google Scholar 

  • Maichum, K., Parichatnon, S., & Peng, K.-C. (2016). Application of the extended theory of planned behavior model to investigate purchase intention of green products among Thai consumers. Sustainability, 8(10), 1077. https://doi.org/10.3390/su8101077

    Article  Google Scholar 

  • Marzouk, M., Abdelkader, E. M., & Al-Gahtani, K. (2017). Building information modeling-based model for calculating direct and indirect emissions in construction projects. Journal of Cleaner Production, 152, 351–363. https://doi.org/10.1016/j.jclepro.2017.03.138

    Article  CAS  Google Scholar 

  • McLeman, R., & Smit, B. (2004). Commentary No. 86: Climate change, migration and security. Canadian Security Intelligence Service.

    Google Scholar 

  • Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2(3), 205–209. https://doi.org/10.1038/nclimate1357

    Article  Google Scholar 

  • Nam, S.-N., Nguyen, T. T., & Oh, J. (2019). Performance indicators framework for assessment of a sanitary sewer system using the analytic hierarchy process (AHP). Sustainability, 11(10), 2746. https://doi.org/10.3390/su11102746

    Article  Google Scholar 

  • Nguyen, H.-T., Gray, M., & Skitmore, M. (2016). Comparative study on green building supportive policies of Pacific-Rim countries most vulnerable to climate change.

  • Nilashi, M., Zakaria, R., Ibrahim, O., Majid, M. Z. A., Zin, R. M., Chugtai, M. W., Abidin, N. I. Z., Sahamir, S. R., & Yakubu, D. A. (2015). A knowledge-based expert system for assessing the performance level of green buildings. Knowledge-Based Systems, 86, 194–209.

    Article  Google Scholar 

  • Ocampo, L., Vergara, V. G., Impas, C., Tordillo, J. A., & Pastoril, J. (2015). Identifying critical indicators in sustainable manufacturing using analytic hierarchy process (AHP). Manufacturing and Industrial Engineering. https://doi.org/10.12776/mie.v14i3-4.444

    Article  Google Scholar 

  • Olhoff, A., & Christensen, J. M. (2018). Emissions gap report 2018. UNEP DTU Partnership.

    Google Scholar 

  • Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., & Wang, D. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future, 3(6), 159–181. https://doi.org/10.1002/2015EF000298

    Article  Google Scholar 

  • Paul, J., Modi, A., & Patel, J. (2016). Predicting green product consumption using theory of planned behavior and reasoned action. Journal of Retailing and Consumer Services, 29, 123–134. https://doi.org/10.1016/j.jretconser.2015.11.006

    Article  Google Scholar 

  • Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398.

    Article  Google Scholar 

  • Pickerill, J. (2015). Cold comfort? Reconceiving the practices of bathing in British self-build eco-homes. Annals of the Association of American Geographers, 105(5), 1061–1077. https://doi.org/10.1080/00045608.2015.1060880

    Article  Google Scholar 

  • Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745–1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x

    Article  Google Scholar 

  • Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of groundwater potential zones of a Tropical River Basin (Kerala, India) using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94. https://doi.org/10.1007/s12524-011-0075-5

    Article  Google Scholar 

  • PWD. (2020). Public Works Department. http://www.pwd.gov.bd/.

  • Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics, 32(S4), 496–501. https://doi.org/10.1038/ng1032

    Article  CAS  Google Scholar 

  • Rahardjati, R., Khamidi, M. F., & Idrus, A. (2010). The level of importance of criteria and sub criteria in green building index malaysia.

  • Rahman, M. S., Khan, M. D. H., Jolly, Y. N., Kabir, J., Akter, S., & Salam, A. (2019). Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Science of the Total Environment, 660, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.12.425

    Article  CAS  Google Scholar 

  • Rana, M. M. P. (2011). Urbanization and sustainability: Challenges and strategies for sustainable urban development in Bangladesh. Environment, Development and Sustainability, 13(1), 237–256. https://doi.org/10.1007/s10668-010-9258-4

    Article  Google Scholar 

  • Razia, S. (2018). Residents perception of green spaces for urban sustainability: A case study in Dhaka city. BRAC University.

    Google Scholar 

  • Reza, A. K., Islam, M. S., & Shimu, A. A. (2017). Green industry in Bangladesh: An overview. Environmental Management and Sustainable Development, 6(2), 124.

    Article  Google Scholar 

  • Richardson, G. R. A., & Lynes, J. K. (2007). Institutional motivations and barriers to the construction of green buildings on campus: A case study of the University of Waterloo, Ontario. International Journal of Sustainability in Higher Education, 8, 339–354.

    Article  Google Scholar 

  • Riti, J. S., Shu, Y., Song, D., & Kamah, M. (2017). The contribution of energy use and financial development by source in climate change mitigation process: A global empirical perspective. Journal of Cleaner Production, 148, 882–894. https://doi.org/10.1016/j.jclepro.2017.02.037

    Article  Google Scholar 

  • Robichaud, L. B., & Anantatmula, V. S. (2011). Greening project management practices for sustainable construction. Journal of Management in Engineering, 27(1), 48–57.

    Article  Google Scholar 

  • Roh, S., Tae, S., Suk, S. J., Ford, G., & Shin, S. (2016). Development of a building life cycle carbon emissions assessment program (BEGAS 2.0) for Korea׳s green building index certification system. Renewable and Sustainable Energy Reviews, 53, 954–965. https://doi.org/10.1016/j.rser.2015.09.048

    Article  Google Scholar 

  • Saaty, T L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting. Resource Allocation.

  • Saaty, Thomas L. (1980). The Analytic Hierarchy Process, New York: McGrew Hill. International, Translated to Russian, Portuguesses and Chinese, Revised Edition, Paperback (1996, 2000), Pittsburgh: RWS Publications, 9, 19–22.

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). RWS publications.

    Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (Vol. 175). Springer Science & Business Media.

    Book  Google Scholar 

  • Şener, Ş, Sener, E., & Karagüzel, R. (2011). Solid waste disposal site selection with GIS and AHP methodology: A case study in Senirkent-Uluborlu (Isparta) Basin, Turkey. Environmental Monitoring and Assessment, 173(1–4), 533–554. https://doi.org/10.1007/s10661-010-1403-x

    Article  Google Scholar 

  • Shen, C., Zhao, K., & Ge, J. (2020a). An overview of the green building performance database. Journal of Engineering, 2020, 1–9. https://doi.org/10.1155/2020/3780595

    Article  Google Scholar 

  • Shen, W., Tang, W., Siripanan, A., Lei, Z., Duffield, C. F., & Hui, F. K. P. (2020). Understanding the green building industry in Thailand. Green building in developing countries (pp. 161–180). Springer.

    Chapter  Google Scholar 

  • Sinha, R., Bapalu, G. V., Singh, L. K., & Rath, B. (2008). Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing, 36(4), 335–349. https://doi.org/10.1007/s12524-008-0034-y

    Article  Google Scholar 

  • SREDA. (2020). Sustainable & Renewable Energy Development Authority. Power Division Ministry of Power, Energy and Mineral Resources Government of the Peoples Republic of Bangladesh. http://www.sreda.gov.bd/.

  • Sudarsan, R., Sriram, R. D., Narayanan, A., Sarkar, P., Jae Hyun Lee, Lyons, K. W., & Kemmerer, S. J. (2010). Sustainable manufacturing: Metrics, standards, and infrastructure—Workshop summary. 2010 IEEE International Conference on Automation Science and Engineering. https://doi.org/10.1109/COASE.2010.5584472.

  • Sultana, R., & Asad, A. (2021). Evaluation of Urbanites’ Perception About Livable City Using Analytic Hierarchy Process (AHP): A Case Study of Dhaka City (pp. 367–381). https://doi.org/10.1007/978-981-15-5608-1_29.

  • Uddin, M. N., Saiful Islam, A. K. M., Bala, S. K., Islam, G. M. T., Adhikary, S., Saha, D., Haque, S., Fahad, M. G. R., & Akter, R. (2019). Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Applied Geography, 102, 47–57. https://doi.org/10.1016/j.apgeog.2018.12.011

    Article  Google Scholar 

  • UNDP. (2007). Human development report 2007/2008: Fighting climate change: Human solidarity in a divided world.

  • van der Heijden, J. (2015). What ‘Works’ in environmental policy-design? Lessons from experiments in the Australian and Dutch building sectors. Journal of Environmental Policy & Planning, 17(1), 44–64. https://doi.org/10.1080/1523908X.2014.886504

    Article  Google Scholar 

  • Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., Green, R., Joy, E. J. M., Dangour, A. D., & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234–241.

    Article  CAS  Google Scholar 

  • Vyas, G. S., Jha, K. N., & Patel, D. A. (2019). Development of green building rating system using AHP and fuzzy integrals: A case of India. Journal of Architectural Engineering, 25(2), 4019004.

    Article  Google Scholar 

  • Wolfram, M. (2018). Cities shaping grassroots niches for sustainability transitions: Conceptual reflections and an exploratory case study. Journal of Cleaner Production, 173, 11–23. https://doi.org/10.1016/j.jclepro.2016.08.044

    Article  Google Scholar 

  • Wong, J. K. W., Li, H., Wang, H., Huang, T., Luo, E., & Li, V. (2013). Toward low-carbon construction processes: The visualisation of predicted emission via virtual prototyping technology. Automation in Construction, 33, 72–78. https://doi.org/10.1016/j.autcon.2012.09.014

    Article  Google Scholar 

  • Xie, X., & Gou, Z. (2020). Obstacles of Implementing Green Building in Architectural Practices (pp. 33–47). https://doi.org/10.1007/978-3-030-24650-1_3.

  • Yudelson, J. (2012). Marketing green building services. Routledge.

    Book  Google Scholar 

  • ZainulAbidin, N. (2010). Investigating the awareness and application of sustainable construction concept by Malaysian developers. Habitat International, 34(4), 421–426. https://doi.org/10.1016/j.habitatint.2009.11.011

    Article  Google Scholar 

  • Zhang, R., Zhang, X., Yang, J., & Yuan, H. (2013). Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Mathematical and Computer Modelling, 57(3–4), 366–374. https://doi.org/10.1016/j.mcm.2012.06.014

    Article  Google Scholar 

  • Zinia, N. J., & McShane, P. (2018). Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landscape and Urban Planning, 173, 23–32. https://doi.org/10.1016/j.landurbplan.2018.01.008

    Article  Google Scholar 

  • Zuo, J., & Zhao, Z.-Y. (2014). Green building research–current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281.

    Article  Google Scholar 

  • Zzaman, R. U., Nowreen, S., Billah, M., & Islam, A. S. (2021). Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. Journal of Flood Risk Management, 14, e12715.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all of the experts from government and non-government sectors for their valuable time and input in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Arif Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M., Sabrina, H., Zzaman, R.U. et al. Green building aspects in Bangladesh: A study based on experts opinion regarding climate change. Environ Dev Sustain 24, 9260–9284 (2022). https://doi.org/10.1007/s10668-021-01823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01823-0

Keywords

Navigation