Skip to main content

Advertisement

Log in

Selection of sustainable solutions for crop residue burning: an environmental issue in northwestern states of India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The main purpose of the paper is to find the sustainable solutions for crop residues burning in the northwestern states of India. Pre- and post-monsoon burning of the crop residues in Punjab, Haryana, Rajasthan, and western Uttar Pradesh increases the particulate matter significantly in the environment. During this period, the wind remains stagnant in Delhi NCR (National Capital Region) which creates an airlock situation in this region. The air quality during this period becomes very poor. It is a major health issue in the northern part of the country, especially in NCR Delhi which is densely populated and industrialized. It has become a major concern for the state as well as central government. Therefore, the purpose of this study is to review the factors forcing the farmers to burn the crop residues in the field and analyze the solutions considering the social and economic sustainability of the farmers. A focus group discussion composed of farmers, academicians, and industry experts has been used to get the opinion regarding the solutions for crop residues burning in the field. For an analysis of the information collected, a hybrid approach of analytic hierarchy process and elimination and choice expressing reality have been used. Based on the analysis, it is observed that use of crop residues for the preparation of biogas, biochar, and bioethanol is the most preferred substitute, whereas use as fuel for the thermal power plant is the second preferred substitute for use of crop residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: SAFAR (2019)

Fig. 2

Source: CPCB (2015)

Fig. 3

Similar content being viewed by others

References

  • Amador, J. A., Glucksman, A. M., Lyons, J. B., & Gorres, J. H. (1997). Soil Science, 162(11), 808. https://doi.org/10.1097/00010694-199711000-000057.

    Article  CAS  Google Scholar 

  • Arora, V. K., Singh, C. B., Sidhu, A. S., & Thind, S. S. (2011). Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agricultural Water Management, 98, 563–568.

    Article  Google Scholar 

  • Beri, V., Sidhu, B. S., Bhat, A. K., &Singh, B. P. (1992). Nutrient balance and soil properties as affected by management of crop residues. In M. S. Bajwa et al. (Eds.), Nutrient management for sustained productivity. Proceedings of international symposium (Vol. II, pp. 133–135). Ludhiana: Department of Soil, Punjab Agricultural University.

  • Bloor, M., Frankland, J., Thomas, M., & Robson, K. (2001). Focus groups in social research. New Delhi: Sage.

    Book  Google Scholar 

  • Brar, S. S., Kumar, S., & Narang, R. S. (2000). Effect of moisture regime and nitrogen on decomposition of combine harvested rice residue and performance of succeeding wheat in rice–wheat system in Punjab. Indian J Agronomy, 45, 458–462.

    Google Scholar 

  • Brechbill, S. C., & Tyner, W. E. (2008). The economics of biomass collection, transportation and supply to Indiana cellulosic and electric utility facility. Working Paper #08-03. Department of Agricultural Economics, Purdue University.

  • Campbell, K. A. (2007). Feasibility study guide for an agricultural biomass Pellet Company. Waseca: Agricultural Utilization Research Institute.

    Google Scholar 

  • Chauhan, S. (2011). Biomass resources assessment for power generation: A case study from Haryana State, India. Biomass and Bioenergy, 34(9), 1300–1308.

    Article  Google Scholar 

  • Chauhan, S. (2012). District wise agriculture biomass resource assessment for power generation: A case study from an Indian state, Punjab. Biomass and Bioenergy, 37, 205–212.

    Article  Google Scholar 

  • Cheewaphongphan, P., Junpen, A., Kamnoet, O., & Garivait, S. (2018). Study on the potential of rice straws as a supplementary fuel in very small power plants in Thailand. Energies, 11(2), 270.

    Article  Google Scholar 

  • Choudhary, M., Dhanda, S., Kapoor, S., & Soni, G. (2009). Lignocellulolytic enzyme activities and substrate degradation by Volvariellavolvacea, The paddy straw mushroom/Chinese mushroom. Indian J Agricultural Research, 43(3), 223–226.

    Google Scholar 

  • CPCB. (December, 2015). Air pollution in Delhi: An analytical study. Retrieved January 10, 2018 from https://www.cpcbenvis.nic.in/envis_newsletter/Air%20Quality%20of%20Delhi.pdf.

  • CPCB. (2016). Air pollution in Delhi: An analysis. Retrieved November 17th, 2019 from http://cpcbenvis.nic.in/envis_newsletter/Air%20pollution%20in%20Delhi.pdf.

  • CPCB. (December, 2017). Ambient air quality data of Delhi-NCR. Retrieved January 10, 2018 from https://cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmlsZS8xODNfMTUxNTU4ODM1OF9tZWRpYXBob3RvODM5LnBkZg==).

  • DAC. (Nov. 2014). National policy for management of crop residue. Retrieved Nov 18th, 2019 from https://agricoop.nic.in/sites/default/files/NPMCR_1.pdf.

  • DAC. (May, 2019). Report of the committee on review of the scheme "promotion of agricultural mechanization for in-situ management of crop residue in states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi. Retrieved November 18th, 2019 fromhttps://farmech.dac.gov.in/revised/1.1.2019/REPORT%20OF%20THE%20COMMITTEE-FINAL(CORRECTED).pdf.

  • Devi, S., Gupta, C., Jat, S. L., & Parmar, M. S. (2017). Crop residue recycling for economic and environmental sustainability: The case of India. Open Agriculture., 2(1), 486–494.

    Article  Google Scholar 

  • Dhaliwal, H. S., Singh, R. P., & Kaur, H. (2011). Financial assessment of happy Seeder. Conservation Agriculture News Letters, 17, 4–5.

    Google Scholar 

  • Douglas, C. L., & Rickman, R. W. (1992). Estimating crop residue decomposition from air temperature, initial nitrogen content, and residue placement. Soil Science Society of America Journal, 56(1), 272–278.

    Article  Google Scholar 

  • Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157, 1554–1558.

    Article  CAS  Google Scholar 

  • Galanter, M., Levy, H., & Carmichael, G. R. (2000). Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research, 105(D5), 6633–6653.

    Article  CAS  Google Scholar 

  • Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., et al. (2016). Premature mortality in India due to PM2.5 and ozone exposure. Geophysical Research Letters, 43, 4650–4658.

    Article  CAS  Google Scholar 

  • Gupta, P. K., Sahai, S., Singh, N., Dixit, C. K., Singh, D. P., & Sharma, C. (2004). Residue burning in rice–wheat cropping system: Causes and implications. Current Science India, 87(12), 1713–1715.

    CAS  Google Scholar 

  • Gupta, R. (2011). Causes of emissions from agricultural residue burning in North-West India; Evaluation of a technology policy response. Kathmandu: South Asian Network for Development and Environmental Economics (SANDEE).

  • Hashemi, S. S., Hajiagha, S. H., & Amiri, M. (2014). Decision making with unknown data: Development of ELECTRE method based on black numbers. Informatics, 25(1), 21–26.

    Article  Google Scholar 

  • Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., & Gullett, B. K. (2005). Open burning of agricultural biomass; physical and chemical properties of particle-phase emissions. Atmospheric Environment, 39, 6747–6764.

    Article  CAS  Google Scholar 

  • Hindustan. (15 Nov., 2019). Vahano ke dhuen se sabse adhik pradushan (Contribution of vehicle in pollution is the highest), p. 02.

  • IARI. (2012). Crop residues management with conservation agriculture: potential, constraints and policy needs (pp. 7–32). New Delhi: Indian Agricultural Research Institute.

    Google Scholar 

  • Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966–2005.

    Article  CAS  Google Scholar 

  • Jain, A. K. (2016). Residue crop (Paddy Straw) burning shrouds NCR. In Proceedings of the 2nd international seminar on utilizationof non-conventional energy sources for sustainable development of rural areas, ISNCESR. Parthivi College of Engineering &Management, C.S.V.T. University, Bhilai, Chhattisgarh, India. 16, 17th and 18th March 2016.

  • Jain, N., Pathak, H., & Bhatia, A. (2014). Sustainable management of crop residues in India. Current Advances in Agricultural Sciences, 6, 1–9.

    Google Scholar 

  • Jat, M. L., Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Jat, A. S., Kumar, V., et al. (2009). Evaluation of precision landlevelingand double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Research, 105, 112–121.

    Google Scholar 

  • Jat, M. L., Kamboj, B. R., Sidhu, H. S., Singh, M., Bana, A., Bishnoi, D. K., et al. (2013). Operational manual for turbo happy Seeder—Technology for managing crop residues with environmental stewardship. Mexico: CIMMYT.

    Google Scholar 

  • Jat, M. L., Saharawat, Y. S., & Gupta, R. (2011). Conservation agriculture in cereal systems of South Asia: Nutrient management perspectives, Karnataka. The Journal of Agricultural Science, 24, 100–105.

    Google Scholar 

  • Jeffery, S., Verheijena, F. G. A., van der Veldea, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144, 175–187.

    Article  Google Scholar 

  • Karkania, V., Fanara, E., & Zabaniotou, A. (2012). Review of sustainable biomass pellets production—A study for agricultural residues pellets’ market in Greece. Renewable and Sustainable Energy Reviews, 16(3), 1426–1436.

    Article  Google Scholar 

  • Kaur, A. (2017). Crop residue in Punjab agriculture-status and constraints. J Krishi Vigyan, 5(2), 22–26. https://doi.org/10.5958/2349-4433.2017.00005.8.

    Article  Google Scholar 

  • Kaur, D., Bhardwaj, N. K., & Lohchab, R. K. (2017). Prospects of rice straw as a raw material for paper making. Waste Management, 60, 127–139.

    Article  CAS  Google Scholar 

  • Koopman, A., & Koppejan, J. (1997). Agricultural and forest residues generation, utilization and availability. Paper presented at the regional consultation on modern applications of biomass energy, Kuala Lumpur, Malaysia.

  • Kumar, A., Cameron, J. B., & Flynn, P. C. (2003). Biomass power cost and optimum plant size in Western Canada. Biomass and Bioenergy, 24(6), 445–464.

    Article  Google Scholar 

  • Kumar, K., & Goh, K. M. (1999). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy, 68, 197–319.

    Article  Google Scholar 

  • Kumar, P., Kumar, S., & Joshi, L. (2015a). Socioeconomic and environmental implications of agricultural residue burning: A case study of Punjab, India, p. 144. Springer Open.

  • Kumar, P., Singh, R. K., & Kharab, K. (2017a). A comparative analysis of operational performance of cellular mobile telephone service providers in Delhi working area using an approach of fuzzy ELECTRE. Applied Soft Computing, 59, 438–447.

    Article  Google Scholar 

  • Kumar, P., Singh, R. K., & Sinha, P. (2016). Optimal site selection for a hospital using a fuzzy extended ELECTRE approach. Journal of Management Analytics, 3(2), 115–135.

    Article  Google Scholar 

  • Kumar, P., Singh, R. K., & Vaish, A. (2017b). Suppliers’ green performance evaluationusing fuzzy extended ELECTRE approach. Clean Technologies and Environmental Policy, 19(3), 809–8021.

    Article  Google Scholar 

  • Kumar, V., Saharawat, Y. S., Gathala, M. K., Jat, A. S., Singha, S. K., Chaudhary, N., et al. (2013). Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research, 142, 1–8.

    Article  Google Scholar 

  • Lefroy, R. D., Chaitep, W., & Blair, G. J. (1994). Release of sulphur from rice residue under flooded and non-flooded soil conditions. Australian Journal of Agricultural Research, 45, 657–667.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371.

    Article  CAS  Google Scholar 

  • Liu, E. (2008). Straw procurement business case. Manitoba Bioproducts Working Group.

  • Liu, W., Xu, Z., & Yang, T. (2018). Health effects of air pollution in China. International Journal of Environmental Research and Public Health, 15(7), 1471.

    Article  Google Scholar 

  • Lohan, S. K., Dixit, J., Kumar, R., Pandey, Y., Khan, J., Ishaq, M., et al. (2015a). Biogas: A boon for sustainable energy development in India's cold climate. Renewable and Sustainable Energy Reviews, 43, 95–101.

    Article  Google Scholar 

  • Lohan, S. K., Dixit, J., Modasir, S., & Ishaq, M. (2012). Resource potential and scope of utilization of renewable energy in Jammu and Kashmir, India. Renewable Energy, 39, 24–29.

    Article  Google Scholar 

  • Lohan, S. K., Jat, H. S., Yadav, A. K., Sindhu, H. S., Jat, M. L., Chaudhary, M., et al. (2018). Burning issues of paddy residue management in north-west states of India. Renewable and Sustainable Energy Reviews, 81, 693–706.

    Article  Google Scholar 

  • Lohan, S. K., Narang, M. K., Manes, G. S., & Grover, N. (2015b). Farmpower availability for sustainable agriculture development in Punjab state of India. Agricultural Engineering International CIGRJ, 17(3), 196–207.

    Google Scholar 

  • Long, W., Tate, R., Neuman, M., Manfreda, J., Becker, A., & Anthonisen, N. (1998). Respiratory symptoms in a susceptible population due to burning of agricultural residue. Chest, 113(2), 351.

    Article  CAS  Google Scholar 

  • Mishra, A. K., & Shibata, T. (2012). Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atmospheric Environment, 57, 205–218.

    Article  CAS  Google Scholar 

  • Mittal, S. K., Singh, N., Agarwal, N., Awasthi, A., & Gupta, P. K. (2009). Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmospheric Environment, 43(2), 238–244.

    Article  CAS  Google Scholar 

  • MNRE. (2009). Ministry of new and renewable energy resources. New Delhi: Govt. of India. Retrieved from www.mnre.gov.in/biomassrsources.

  • NAAS. (2012). Management of crop residues in the context of conservation agriculture. Policy Paper No. 58, National Academy of Agricultural Sciences, New Delhi 12.

  • NDTV. (March 28, 2016). Penalty imposed. In 1406 cases of stubble burning in Haryana. Accessed March 28, 2016 from https://www.ndtv.com/india-news/penalty-imposed-in-1-406-cases-of-stubble-burning-in-haryana-1621766.

  • Oanh, N. T. K., Ly, B. T., Tipayarom, D., Manandhar, B. R., Prapat, P., Simpson, C. D., et al. (2011). Characterization of particulate matter emission from open burning of paddy straw. Atmospheric Environment, 45, 493–502.

    Article  CAS  Google Scholar 

  • Oanh, N. T. K., Permadi, D. A., Hopke, P. K., Smith, K. R., Dong, N. P., & Dang, A. N. (2018). Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmospheric Environment, 187, 163–173.

    Article  CAS  Google Scholar 

  • Pandey, C. (2019). Management of crop residue for sustaining soil fertility and foodgrains production in India. Acta Scientific Agriculture, 3(1), 188–195.

    Google Scholar 

  • Pandey, C. H., & Sujatha, D. (2011). Crop residues, the alternate raw materials of tomorrow for the preparation of composite board. Indian Plywood Industries Research & Training Institute. https://innovate.mygov.in/wp-content/uploads/2018/07/mygov1532797148376098.pdf

  • Pathak, H., Bhatia, A., & Jain, N. (2010). Inventory of greenhouse gas emission from agriculture. Report submitted to Ministry of Environment and Forests, Govt. of India.

  • Pathak, H., Singh, R., Bhatia, A., & Jain, N. (2006). Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy and Water Environment, 4(2), 111.

    Article  Google Scholar 

  • PSCST-TERI. (2014). Action plan for green budgeting in Punjab; concepts, rationale and ways forward. The Energy and Resources Institute (TERI) and Punjab State Council for Science and Technology (PSCST). Supported by Department of Science, Technology and Environment, Government of Punjab, India.

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geo Science, 1(4), 221–227.

    Article  CAS  Google Scholar 

  • Ravindra, K., Singh, T., & Mor, S. (2018). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.10.031.

    Article  Google Scholar 

  • Roy, P., & Kaur, M. (2016). Assessment of farmers’ knowledge about beneficial effects of application of paddy straw onto soil in West Bengal. Journal of Community Mobilization and Sustainable Development, 11(1), 100–106.

    Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource allocation. Pittsburgh: RWS Publications.

    Google Scholar 

  • SAFAR. (2019). System of air quality and weather forecasting and research. Retrieved November 17th, 2019 from https://safar.tropmet.res.in/.

  • Sahai, S., Sharma, C., Singh, D. P., Dixit, C. K., Singh, N., Sharma, P., et al. (2007). A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmospheric Environment, 41, 9173–9186.

    Article  CAS  Google Scholar 

  • Sangeet, K. R. (2016). Crop residue generation and management in Punjab state. Indian Journal of Economics and Development, 12(1), 477–483.

    Article  Google Scholar 

  • Sekhon, N. K., Singh, C. B., Sidhu, A. S., Thind, S. S., Hira, G. S., & Khurana, D. S. (2008). Effect of mulching, irrigation and fertilizer nitrogen levels on soil hydrothermal regime, water use and yield of hybrid chilli. Archives of Agronomy and Soil Science, 54, 163–174.

    Article  CAS  Google Scholar 

  • Shanian, A., & Savadogo, O. (2006). ELECTRE I decision support model for material selection of bipolar plates for polymer electrolyte fuel cells applications. Journal of New Materials for Electrochemical Systems, 9, 191–199.

    CAS  Google Scholar 

  • Sidhu, B. S., & Beri, V. (2005). Experience with managing rice residues in intensive rice–wheat cropping system in Punjab. In I. P. Abrol, R. K. Gupta, & R. K. Malik (Eds.), Conservation agriculture: Status and prospects (pp. 55–63). New Delhi: Centre for Advancement of Sustainable Agriculture, National Agriculture Science Centre.

    Google Scholar 

  • Sidhu, H. S., Singh, S., Singh, Y., Blackwell, J., Lohan, S. K., Humphreys, E., et al. (2015). Development and evaluation of the turbo happy Seeder for sowing wheat into heavy rice residues in NIndia. Field Crops Research, 184, 201–212.

    Article  Google Scholar 

  • Singh, A. P., Chakrabarti, S., Kumar, S., & Singh, A. (2017). Assessment of air quality in Haora River basin using fuzzy multiple-attribute decision making techniques. Environmental Monitoring and Assessment, 189(8), 373.

    Article  CAS  Google Scholar 

  • Singh, C. P., & Panigrahy, S. (2011). Characterisation of residue burning from agricultural system in India using space based observations. Journal of the Indian Society of Remote Sensing, 39(3), 423–429.

    Article  Google Scholar 

  • Singh, J., Panesar, B. S., & Sharma, S. K. (2008). Energy potential through agricultural biomass using geographical information system—A case study of Punjab. Biomass and Bioenergy, 32, 301–307.

    Google Scholar 

  • Singh, K. K., Lohan, S. K., Jat, A. S., & Rani, T. (2006). New technologies of growing rice for higher production. Research Crops, 7(2), 369–371.

    Google Scholar 

  • Singh, M., Sidhu, H. S., Singh, Y., & Blackwell, J. (2011). Effect of rice straw management on crop yields and soil health in rice–wheat system. Conservation Agricultural News PACA, 18, 1–11.

    Google Scholar 

  • Singh, R. P., & Kaskaoutis, D. G. (2014). Crop residue burning: a threat to South Asian air quality. EOS, Transactions American Geophysical Union95(37), 333–340.

    Article  Google Scholar 

  • Singh, S., Batra, R., Mishra, M. M., Kapoor, K. K., & Goyal, S. (1992). Decomposition of paddy straw in soil and the effect of straw incorporation in the field on the yield of wheat. Journal of Plant Nutrition and Soil Sciences, 155(4), 307–311.

    Google Scholar 

  • Singh, Y., Humphreys, E., Kukal, S. S., Singh, B., Kaur, A., Thaman, S., et al. (2009). Crop performance in permanent raised bed rice–wheat cropping system in Punjab India. Field Crops Research, 110, 1–20.

    Article  CAS  Google Scholar 

  • Singh, Y., & Sidhu, H. S. (2014). Management of cereal crop residues for sustainable rice–wheat production system in the Indo-Gangetic plains of India. Proceeding of Indian National Science Academy, 80(1), 95–114.

    Article  CAS  Google Scholar 

  • Singh, Y., Sidhu, H. S., Khanna, P. K., Kapoor, S., Jain, A. K., Singh, A. K., et al. (2010). Options for effective utilization of crop residues. Ludhiana: Directorate of Research Punjab Agricultural University.

    Google Scholar 

  • Singh, Y., Singh, B., Ladha, J. K., Khind, C. S., Khera, T. S., & Bueno, C. S. (2004). Management effects on residue decomposition, crop production and soil fertility in a rice–wheat rotation in India. Soil Science Society of America Journal, 68, 320–326.

    Article  Google Scholar 

  • Singh, Y., Singh, B., & Timsina, J. (2005). Crop residue management for nutrient cycling and improving soil productivity in paddy-based cropping systems in the tropics. Advances in Agronomy, 85, 269–407.

    Article  CAS  Google Scholar 

  • Singh, Y., Singh, D., & Tripathi, R. P. (1996). Crop residue management in rice–wheat cropping system. In Abstracts of poster sessions 2nd international crop science congress (p. 43). New Delhi: National Academy of Agricultural Sciences, p. 26.

  • Stewart, D. W., & Shamdasani, P. N. (1990). Focus groups: theory and practices. London: Sage.

    Google Scholar 

  • Sultana, A., Kumar, A., & Harfield, D. (2010). Development of agri-pellet production cost and optimum size. Bioresource Technology, 101(14), 5609–5621.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1994). Soil enzymes. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 775–833). Madison: American Society of Agronomy.

    Google Scholar 

  • Teodoro, C., & Mendoza, B. C. (2016). A review of sustainability challenges of biomass for energy: Focus in the Philippines. Journal of Agricultural Technology, 12(2), 281–310.

    Google Scholar 

  • Tianjia, L., Miriam, E., Marlier, R. S., DeFries, D. M., Westervelt, K. R., Xia, A. M., et al. (2018). Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172, 83–92.

    Article  CAS  Google Scholar 

  • Treets, D. G., Yarber, K. F., Woo, J. H., & Carmichael, G. R. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17, 1099.

    Google Scholar 

  • Vadrevu, K. P., Ellicott, E., & Badarinath, K. (2011). MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, North India. Environmental Pollution, 159(6), 1560–1569.

    Article  CAS  Google Scholar 

  • Van den Elshout, S., Léger, K., & Heich, H. (2014). CAQI common air quality index—Update with PM2. 5 and sensitivity analysis. Science of the Total Environment, 488, 461–468.

    Article  CAS  Google Scholar 

  • Verma, S. S. (2014). Technologies for stubble use. Journal of Agriculture and Life Sciences, 1(1), 106–110.

    Google Scholar 

  • WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. ISBN 9789241511353. https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1

  • Yang, S., He, H., Lu, S., Chen, D., & Zhu, J. (2008). Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmospheric Environment, 42(9), 1961–1969.

    Article  CAS  Google Scholar 

  • Yang, S. S., Liu, C. M., Lai, C. M., & Liu, Y. L. (2003). Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990–2000 in Taiwan. Chemosphere, 52, 1295–1305.

    Article  CAS  Google Scholar 

  • Zhang, H. F., Ye, X. N., Cheng, T. T., Chen, J. M., Yang, X., Wang, L., et al. (2008). A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmospheric Environment, 42, 8432–8441.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Fig. 4.

Fig. 4
figure 4

Source: CPCB (2017)

Pre- and post-monsoon Air Quality Index-2017 in Delhi NCR.

Appendix 2: Questionnaire

figure a
figure b
figure c
figure d
figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, R.K. Selection of sustainable solutions for crop residue burning: an environmental issue in northwestern states of India. Environ Dev Sustain 23, 3696–3730 (2021). https://doi.org/10.1007/s10668-020-00741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00741-x

Keywords

Navigation