Skip to main content

Advertisement

Log in

Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The lower Vellar river basin is the study site for the assessment of hydrogeochemical characters of groundwater using GIS and Water Quality Index (WQI). The study site is entirely covered by the sediment topography of alluvium and Cuddalore sandstone. The site faces the water scarcity and water quality problem when rainfall failure occurs. Under these situations, a GIS- and WQI-based groundwater quality has been deliberate in this basin. To appraise the groundwater geochemical characteristics, in total eighty samples were collected, viz., PREM (pre-monsoon) and POSTM (post-monsoon), and examined for important physicochemical (Na+, Mg+, Ca++, K+, Cl, HCO3, NO3, SO4, SiO2, TDS, EC, and pH) parameters. The results of the sample analysis and interpretation of groundwater data reveal that the maximum samples fall in Ca-Cl2, Ca-SO4 followed by Na-Cl2 water type. Gibb’s diagram shows that most samples plotted in weathering and followed by evaporation field. Percentage of sodium (Na%) results indicate that 18% samples were poor; 8.75%—permissible; and 72.5%—good category. According to SAR classification, 80% of the groundwater samples fall under C3S1 followed by C2S1 and C4S1 water type. The water quality index (WQI) shows that 70% of the samples fall good, 21.25% of the samples fall poor, and 8.75% of the samples fall excellent category. Hence, the study site is an alarming stage to become deterioration of the groundwater quality and could be problem to the public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alaya, M. B., Saidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Sciences,71, 3387–3421.

    Google Scholar 

  • Anitha, P., Charmaine, J., & Nagaraja, S. (2011). Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-011-2244-y.

    Article  Google Scholar 

  • Baruah, M., Bhattacharyya, K. G., & Patgiri, A. D. (2008). Water quality of shallow groundwater of core city area of Guwahati. In Proceedings of sixteenth national symposium on environment, Haryana, India (pp. 101–106).

  • Brindha, K., & Elango, L. (2012). Impact of tanning industries on groundwater quality near a metropolitan city in India. Water Resource Management,26, 1747–1761.

    Google Scholar 

  • Burrough, P. A., & Mc Donell, R. A. (1998). Principles of geographical information systems (p. 333). Oxford: Oxford University Press.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., et al. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment,385, 272–283.

    CAS  Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Srinivasamoorthy, K., & Anandhan, P. (2003). WATCLAST—A computer program for hydrogeochemical studies, recent trends in hydrogeochemistry (case studies from surface and subsurface waters of selected countries) (pp. 203–207). NewDelhi: Capital Publishing Company.

    Google Scholar 

  • Chung, S. Y., Venkatramanan, S., Kim, T. H., Kim, D. S., & Ramkumar, T. (2014). Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-014-9552-7.

    Article  Google Scholar 

  • Dar, I. A., Sankar, K., Shafi, T., & Dar, M. A. (2011). Investigation of groundwater quality in Hardrock Terrain using geoinformation system. Environmental Monitoring Assessment,176(1–4), 575–595.

    CAS  Google Scholar 

  • El-Hames, A. S., Ahmadi, A., & Al Amri, N. (2011). A GIS approach for the assessment of groundwater quality in Wadi Rabigh aquifer, Saudi Arabia. Environmental Earth Sciences,63, 1319–1331.

    Google Scholar 

  • Elton, N. W., Elton, W. J., & Narzareno, J. P. (1963). Pathology of acute salt poisoning in infants. American Journal of Clinical Pathology,39, 252–264.

    CAS  Google Scholar 

  • Freeze, A., & Cherry, J. (1979). Groundwater (p. 604). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling worlds water chemistry. Science,170, 1088–1090.

    CAS  Google Scholar 

  • Gnanachandrasamy, G., Ramkumar, T., Vasudevan, S., Venkatramanan, S., Chung, S. Y., & Bagyaraj, M. (2015). Accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques. Applied Water Science,5, 39–55. https://doi.org/10.1007/s13201-014-0172-z.

    Article  CAS  Google Scholar 

  • Gnanachandrasamy, G., Ramkumar, T., Venkatramanan, S., Anitha Mary, I., & Vasudevan, S. (2012). GIS based hydrogeochemical characteristics of groundwater quality in Nagapattinam district, Tamilnadu, India. Carpathian Journal Earth and Environmental Sciences,7(3), 205–210.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USGS water supply paper (Vol. 2254, pp. 117–120).

  • Hofmann, H., & Cartwright, I. (2013). Using hydrogeochemistry to understand inter-aquifer mixing in the on-shore part of the Gippsland Basin, southeast Australia. Applied Geochemistry,33, 84–103.

    CAS  Google Scholar 

  • Jeevanandam, M., Kannan, R., Srinivasalu, S., & Rammohan, V. (2006). Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore District, South India. Environmental Monitoring and Assessment,132, 263–274.

    Google Scholar 

  • Jeevanandam, M., Nagarajan, R., Manikandan, M., Senthilkumar, M., Srinivasalu, S., & Prasanna, M. V. (2012). Hydrogeochemistry and microbial contamination of groundwater from Lower Ponnaiyar Basin, Cuddalore District, Tamil Nadu, India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1534-1.

    Article  Google Scholar 

  • Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology,109, 49–61.

    CAS  Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment, development and management (p. 720). New Delhi: Tate McGraw Hill.

    Google Scholar 

  • Ketata, M., Hamzaoui, F., Gueddari, M., Bouhlila, R., & Ribeiro, L. (2011). Hydrochemical and statistical study of groundwaters in Gabes south deep aquifer (southeastern Tunisia). Journal of Physics and Chemistry of the Earth,36, 187–196.

    Google Scholar 

  • Khodapanah, L., Sulaiman, W. N. A., & Khodapanah, N. (2009). Groundwater quality assessment for different purposes in Eshtehard District, Tehran, Iran. European Journal of Scientific Research,36, 543–553.

    Google Scholar 

  • Kim, T. H., Chung, S. Y., Park, N., Hamm, S. Y., Lee, S. Y., & Kim, B. W. (2012). Combined analyses of chemometrics and kriging for identifying groundwater contamination sources and origins at the Masan coastal area in Korea. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1582-6.

    Article  Google Scholar 

  • Krishna Kumar, S., Bharani, R., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Applied Water Science,4, 341–350.

    CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment,159, 341–351.

    CAS  Google Scholar 

  • Kurdi, M., & Eslamkish, T. (2017). Hydro-geochemical classification and spatial distribution of groundwater to examine the suitability for irrigation purposes (Golestan Province, north of Iran). Paddy and Water Environment. https://doi.org/10.1007/s10333-017-0587-x.

    Article  Google Scholar 

  • Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators,9, 1188–1197.

    CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L., et al. (2016). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure Health,8, 331–348.

    CAS  Google Scholar 

  • Ma, J. Z., Wang, X. S., & Edmunds, W. M. (2005). The characteristics of ground-water resources and their changes under the impacts of human activity in the arid northwest china—A case study of the Shiyang river basin. Journal of Arid Environments,61, 277–295.

    Google Scholar 

  • Madison, R. J., & Brunett, J. O. (1984). Overview of the occurrence of nitrate in ground water of the United States. In National Water Summary 1984. U.S. Geological Survey, Water supply paper (Vol. 2275).

  • Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science,3, 467–477. https://doi.org/10.1007/s13201-013-0095-0.

    Article  Google Scholar 

  • Matta, G., Srivastava, S., Pandey, R. R., & Saini, K. K. (2017). Assessment of physicochemical characteristics of Ganga Canal water quality in Uttarakhand. Environment, Development and Sustainability,19, 419–431. https://doi.org/10.1007/s10668-015-9735-x.

    Article  Google Scholar 

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, South-eastern Europe. Desalination,213, 159–173.

    CAS  Google Scholar 

  • Mondal, N. C., Singh, V. S., Puranik, S. C., & Singh, V. P. (2010). Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environmental Monitoring and Assessment,163, 215–227.

    CAS  Google Scholar 

  • Namibian, M. (2007). A new Water Quality Index for environmental contamination contributed by mineral processing: a case study of Amang (tin tailing) processing activity. Journal of Applied Sciences,7, 2977–2987.

    Google Scholar 

  • Narany, T. Z., Ramli, F. Z., Aris, A. Z., & Sulaiman, F. K. (2014). Groundwater irrigation quality mapping using geostatistical techniques in Amol–Babol Plain, Iran. Arabian Journal of Geosciences,3, 7. https://doi.org/10.1007/s12517-014-1271-8.

    Article  CAS  Google Scholar 

  • Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment,160, 215–227.

    CAS  Google Scholar 

  • Pierre, D., Glynn, L., & Plummer, N. (2005). Geochemistry and the understanding of ground water systems. Journal of Hydrology,13, 263–287.

    Google Scholar 

  • Piper, A. M. (1953). A graphic procedure I the geo-chemical interpretation of water analysis. USGS groundwater note no. 12.

  • Qiyan, F., & Baoping, H. (2002). Hydrogeochemical simulation of water- rock interaction under water flood recovery in Renqiu Oilfield, Hebei Province, China. Chinese Journal of Geochemistry,21, 156–162.

    Google Scholar 

  • Raman, V. (1983). Impact of corrosion in the conveyance and distribution of water. Journal of Indian Water Works Association,15(1), 115–121.

    Google Scholar 

  • Rao, G. T., Rao, V. V. S. G., Rao, Y. S., & Ramesh, G. (2013). Study of hydrogeochemical processes of the groundwaters in Ghatprabha river sub-basin, Bagalkot District, Karnataka, India. Arabian Journal of Geosciences, 6(7), 2447–2459.

    Google Scholar 

  • Rasouli, F., Pouya, A. K., Ali, S., & Cheraghi, M. (2012). Hydrogeochemistry and water quality assessment of the Kor-Sivand Basin, Fars province, Iran. Environmental Monitoring and Assessment,184, 4861–4877. https://doi.org/10.1007/s10661-011-2308-z.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. In Agricultural handbook (Vol. 60, p. 160). Washington, DC: USDA.

    Google Scholar 

  • Ryznre, J. W. (1944). A new index for determining amount of calcium carbonate scale formed by water. Journal of American Water Works Association,36, 472–486.

    Google Scholar 

  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment,163, 327–335. https://doi.org/10.1007/s10661-009-0837-5.

    Article  CAS  Google Scholar 

  • Sanjai Kumar, P. J., Elango, L., & James, E. J. (2013). Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-013-0940-3.

    Article  Google Scholar 

  • Sarath Prasanth, S. V., Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science,2, 165–175. https://doi.org/10.1007/s13201-012-0042-5.

    Article  CAS  Google Scholar 

  • Selvam, S., Manimaran, G., Sivasubramanian, P., Balasubramanian, N., & Seshunarayana, T. (2014). GIS-based evaluation of Water Quality Index of groundwater resources around Tuticorin coastal city, south India. Environmental Earth Sciences,71, 2847–2867.

    CAS  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research,37, 4119–4124.

    CAS  Google Scholar 

  • Singh, U. V., Abhishek, A., Kunwar, K. P., Dhakate, R., & Singh, N. P. (2014). Groundwater quality appraisal and its hydrochemical characterization in Ghaziabad (a region of indo-gangetic plain), Uttar Pradesh, India. Applied Water Science,4, 145–157.

    CAS  Google Scholar 

  • Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration,175, 59–71.

    CAS  Google Scholar 

  • Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology,54, 745–758.

    CAS  Google Scholar 

  • Sivasubramanian, P., Balasubramanian, N., Soundranayagam, J. P., & Chandrasekar, N. (2013). Hydrochemical characteristics of coastal aquifers of Kadaladi, Ramanathapuram District, Tamilnadu, India. Applied Water Science,3, 603–612.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem District, Tamil Nadu, India. Journal of Earth System Science,117(1), 49–58.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, S., Chidambaram, S., Anandhan, P., et al. (2012). Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamilnadu, India. Arabian Journal of Geosciences,5, 83–94.

    CAS  Google Scholar 

  • Stuyfzand, P. J. (1989). Nonpoint source of trace element in potable groundwater in Netherland. In Proceedings of the 18th TWSA Water Working, Testing and Research Institutek, KIWA, Nieuwegein.

  • Subba Rao, N., & Devadas, D. J. (2003). Fluoride incidence in groundwater in an area of peninsular India. Environmental Geology,45, 243–251.

    Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2009). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-009-0781-4.

    Article  Google Scholar 

  • Thiyagarajan, M., & Baskaran, R. (2011). Groundwater quality in the coastal stretch between Sirkazhi and Manampandal, Tamil Nadu, India using Arc GIS Software. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-011-0500-7.

    Article  Google Scholar 

  • Tirkey, P., Bhattacharya, T., & Chakraborthy, S. (2013). Water quality indices-important tools for water quality assessment: A review. International Journal of Advanced Chemistry,1, 15–28.

    Google Scholar 

  • Todd, D. K. (1980). Ground water hydrology. New York: Wiley.

    Google Scholar 

  • Tomer, T. (2015). Water quality indices used for groundwater quality assessment. International Journal of Environmental Science and Technology,5, 76–80.

    Google Scholar 

  • USSL. (1954). Diagnosis and improvement of saline and alkaline soils. USDA handbook (Vol. 60, pp. 147)

  • Vasanthavigar, M., Srinivasamoorthy, K., Prasanna, M. V. (2012). Evaluation of ground water suitability for domestic, irrigational, and industrial purposes: A case study from Thirumanimuttar river basin, Tamilnadu, India. Environmental Monitoring and Assessment, 184, 405–420. https://doi.org/10.1007/s10661-011-1977-y.

    Article  CAS  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Sarama, V. S., et al. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring Assessment,171, 595–609. https://doi.org/10.1007/s10661-009-1302-1.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., Gnanachandrasamy, G., & Vasudevan, S. (2013). A multivariate statistical approaches on physicochemical characteristics of groundwater in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, India. Earth Sciences Research Journal,17, 97–103.

    Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., Gnanachandrasamy, G., Vasudevan, S., & Lee, S. Y. (2014). Application of GIS and hydrogeochemistry of groundwater pollution status of Nagapattinam district of Tamil Nadu, India. Environmental Earth Sciences,73(8), 4429–4442.

    Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Selvam, S., Lee, S. Y., & Elzain, H. Y. (2017). Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9990-5.

    Article  Google Scholar 

  • Vetrimurugan, E., Elango, L., & Rajmohan, N. (2013). Sources of contaminants and groundwater quality in the coastal part of a river delta. International Journal of Environmental Science and Technology,10, 473–486. https://doi.org/10.1007/s13762-012-0138-3.

    Article  CAS  Google Scholar 

  • Vijith, H., & Satheesh, R. (2007). Geographical information system based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India. Environmental Geology,53, 1–9. https://doi.org/10.1007/s00254-006-0612-7.

    Article  CAS  Google Scholar 

  • WHO. (1993). Guidelines for drinking water quality (2nd ed., Vol. 1, p. 188). Recommendations, Geneva: World Health Organization.

  • WHO. (2004). Guidelines for drinking water quality vol. 1 recommendations (p. 130). Geneva: WHO.

    Google Scholar 

  • WHO. (2008). Guidelines for drinking water quality (3rd ed.). Geneva: WHO.

    Google Scholar 

  • WHO. (2009). Calcium and magnesium in drinking water public health significance (p. 85). Geneva: World Heath Organizations.

    Google Scholar 

  • WHO. (2014). Guidelines for drinking-water quality, world health organization (3rd ed., Vol. 1, p. 515). Geneva, Recommendations.

  • Wilcox, L. V. (1948). Classification and use of irrigation water. U.S. Geological Department Agri Arc 969, 19.

  • Wilcox, L. V. (1955). Classification and use of irrigation water. US Geological Department of Agriculture Circular,969, 19.

    Google Scholar 

  • World Bank Report. (2010). Deep wells and prudence: Towards pragmatic action for addressing groundwater overexploitation in India. The World Bank, Washington Report No. 51676.

  • Yammani, S. (2007). Groundwater quality suitable zones identification: application of GIS, Chittoor area, Andhra Pradesh, India. Environmental Geology,53(1), 201–210.

    CAS  Google Scholar 

  • Yisa, J., & Jimoh, T. (2010). Analytical studies on Water Quality Index of River Landzu. American Journal of Applied Sciences,7, 453. https://doi.org/10.3844/ajassp.2010.453.458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dushiyanthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanachandrasamy, G., Dushiyanthan, C., Jeyavel Rajakumar, T. et al. Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI). Environ Dev Sustain 22, 759–789 (2020). https://doi.org/10.1007/s10668-018-0219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0219-7

Keywords

Navigation