Skip to main content
Log in

Water resources planning and management based on system dynamics: a case study of Yulin city

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Water security is an integral aspect of the socio-economic development in China. Nevertheless, water resources are under persistent pressures because of the growing population, heavy irrigation, climate change effects and short-term policies. Traditional management approaches narrowly focus on increasing supply and reducing demand without considering the complex interactions and feedback loops that govern water resource behaviour. Whereas these approaches may provide quick fix solutions, they often lead to unanticipated, sometimes catastrophic, delayed outcomes. Therefore, water management needs to take a holistic approach that caters to the interdependent physical (e.g. water inflows, outflows) and behavioural (e.g. decision rules, perceptions) processes in the system. Unlike reductionist approaches, System Dynamics (SD) takes a system-level view for modelling and analysing the complex structure (cause–effect relationships, feedback loops, delays) that generates the systemic behaviour. Simulating the SD model allows assessing long-term system-wide impacts, exploring leverage points and communicating results to decision makers. In this paper, we follow an SD modelling approach to examine the future of water security in Yulin City. First, we present a conceptual model for integrating water supply and demand. Based on this, we build an SD model to simulate and analyse the dynamics of water resource over time. The model output is tested to ensure that it satisfactorily replicates the historical behaviour of the system. The model is used to quantitatively assess the effectiveness of various supply/demand management options. Three scenarios are designed and examined: business-as-usual, supply management, and demand management. Results show that current management regime cannot effectively meet the future water demand. Whereas supply acquisition provides short-term benefits, it cannot cope with the growing population. A combination of conservation measures and demand-management instruments is regarded the most effective strategy for balancing supply and demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, S., & Simonovic, S. P. (2004). Spatial system dynamics: New approach for simulation of water resources systems [J]. Journal of Computing in Civil Engineering, 18(4), 331–340.

    Article  Google Scholar 

  • Born, S., & Sonzogni, W. (1995). Integrated environmental management: Strengthening the conceptualization. Environmental Management [J], 19(2), 167–181.

    Article  Google Scholar 

  • Brierley, G., & Fryirs, K. A. (Eds.). (2008). River futures: An integrative scientific approach to river repair. Washington, DC: Island Press.

    Google Scholar 

  • Brown, L., & Flavin, C. (1999). A new economy for a new century. State of the World. 3–21.

  • Butler, D., & Memon, F. A. (2006). Water demand management [M]. London: IWA Publishing.

    Google Scholar 

  • Elmahdi, A., Malano, H., & Etchells, T. (2007). Using system dynamics to model water-reallocation [J]. Environmentalist, 27, 3–12.

    Article  Google Scholar 

  • Glantz, M. (1999). Sustainable development and creeping environmental problems. In M. Glantz (Ed.), Creeping environmental problems and sustainable development in the Aral Sea basin (pp. 1–25). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gumbo, B. (2004). The status of water demand management in selected cities of southern Africa [J]. Physics and Chemistry of the Earth, 29, 1225–1331.

    Google Scholar 

  • Guo, H. C., Liu, L., & Huang, G. H. (2001). A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin [J]. Journal of Environmental Management, 61, 93–111.

    Article  CAS  Google Scholar 

  • Hjorth, P., & Bagheri, A. (2006). Navigating towards sustainable development: A system dynamics approach [J]. Futures, 38(1), 74–92.

    Article  Google Scholar 

  • Holling, C., & Meffe, G. (1996). Command and control and the pathology of natural resource management [J]. Conservation Biology, 10(2), 328–337.

    Article  Google Scholar 

  • Jakeman, A., Letcher, R., Newham, L., & Norton, J. (2005). Integrated catchment modelling: Issues and opportunities to support improved sustainability outcomes. In Proceedings of the 29th hydrology and water resources symposium, Canberra, Australia.

  • Karavezyris, V., Timpe, K. P., & Marzi, R. (2002). Application of system dynamics and fuzzy logic to forecasting of municipal solid waste [J]. Mathematics and Computers in Simulation, 60, 149–158.

    Article  Google Scholar 

  • Rogers, P., de Silva, R., & Bhatia, R. (2002). Water is an economic good: How to use prices to promote equity, efficiency, and sustainability [J]. Water Policy, 4, 1–17.

    Article  Google Scholar 

  • Savenije, H., & van der Zaag, P. (2002). Water as an economic good and demand management paradigms with pitfalls [J]. Water International, 27(1), 98–104.

    Article  Google Scholar 

  • Stephenson, D. (1999). Demand management theory [J]. Water SA, 25(2), 115–122.

    Google Scholar 

  • Sterman, J. (1994). Learning in and about complex systems [J]. System Dynamics Review, 10, 291.

    Article  Google Scholar 

  • Sterman, J. (2000). Business dynamics: Systems thinking and modelling for a complex world. Boston: Irwin/McGraw-Hill.

    Google Scholar 

  • Sun, Y. F., Guo, H.-C., & Qu, G.-Y. (2002). A system dynamics approach for sustainable development in the Miyun reservoir area, China [J]. Chinese Geographical Science, 12(2), 157–165.

    Article  Google Scholar 

  • Ventana Systems, Inc. (2003). Vensim 5 reference manual [M]. (http://www.vensim.com).

  • Wheida, E., & Verhoeven, R. (2007). An alternative solution of the water shortage problem in Libya [J]. Water Resource Manage, 21, 961–982.

    Article  Google Scholar 

  • Winz, I., Brierley, G., & Trowsdale, S. (2009). The use of system dynamics simulation in water resources management [J]. Water Resources Management, 23(7), 1301–1323.

    Article  Google Scholar 

  • Wolstenholme, E. (1990). System enquiry: A system dynamics approach. New York, NY, USA: Wiley.

    Google Scholar 

  • Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2002). Sustainability analysis for Yellow River water resources using the system dynamics approach [J]. Water Resources Management, 16, 239–261.

    Article  Google Scholar 

  • Yu, C.-H., Chen, C.-H., & Lin, C.-F. (2003). Development of system dynamics model for sustainable land use management [J]. Journal of the Chinese Institute of Engineers, 26(5), 607–618.

    Google Scholar 

  • Zhang, H. L. (2005). Strategic study for water management in China [M]. Nanjing: Southeast University Press.

    Google Scholar 

  • Zhang, X. H., Zhang, H. W., & Chen, B. (2008). Water resources planning based on complex system dynamics: A case study of Tianjin city [J]. Communications in Nonlinear Science and Numerical Simulation, 13, 2328–2336.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Basic Research Program of China (No. 2010CB951104), (No. 2010CB951103) and Non-profit Industry Program of the Ministry of Water Resource of the People’s Republic of China (No. 200801001) for financial support of this research. Thanks also to the helpful comments received from the anonymous reviewers and the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jun Wang.

Additional information

Readers should send their comments on this paper to BhaskarNath@aol.com within 3 months of publication of this issue.

Appendices

Appendices

1.1 Appendix 1

See Table 2.

Table 2 Abbreviations of variables and parameters in the YulinSD model

1.2 Appendix 2: Main equations of the YulinSD model

  1. (1)

    GRGDP = (0.09 + RAMP(−0.05, 10, 20) · (1 − WSR · 5))

  2. (2)

    GR1GDP = MAX(GRGDP, 0.08)

  3. (3)

    GGDP = GDP · GR1GDP

  4. (4)

    GDP = INTEG(GGDP, 72879)

  5. (5)

    TIO = GDP · PIT

  6. (6)

    TPIT([(1980, 0) − (2050, 1)] , (1980, 0.17), (1985, 0.2), (1990, 0.3), (1995, 0.35), (2000, 0.31), (2005, 0.28), (2010, 0.35), (2020, 0.38), (2030, 0.4))

  7. (7)

    PIT = TPIT(Time)

  8. (8)

    TPIO([(1980, 0) − (2050, 1)], (1980, 0.195), (1985, 0.193), (1990, 0.21), (1995, 0.36), (2000, 0.5), (2005, 0.67), (2010, 0.6), (2020, 0.55), (2030, 0.5))

  9. (9)

    PIO = TPIO(Time)

  10. (10)

    IO = GDP · PIO

  11. (11)

    TQIWD([(1980, 0) − (2050, 500)] , (1980, 468), (1985, 411), (1990, 389), (1995, 170), (2000, 118 ), (2005, 52), (2010, 46), (2020, 43), (2030, 37))

  12. (12)

    QIWD = TQIWD(Time)

  13. (13)

    QTIWD = 13

  14. (14)

    CRP = 0.0166

  15. (15)

    CHP = TP · CRP

  16. (16)

    TP = INTEG(CHP, 233.1)

  17. (17)

    TUR([(1980, 0) − (2050, 1)] , (1980, 0.07), (1985, 0.092), (1990, 0.096), (1995, 0.115), (2000 , 0.15), (2005, 0.165), (2010, 0.201), (2020, 0.288), (2030, 0.375))

  18. (18)

    UR = TUR(Time)

  19. (19)

    UP = UR · TP

  20. (20)

    RP = TP − UP

  21. (21)

    TQU([(1980, 60) − (2050, 150)], (1980, 67.6), (1985, 74.8), (1990, 83.3), (1995, 88.7), (2000, 98.6), (2005, 101), (2010, 97), (2020, 105), (2030, 110))

  22. (22)

    QU = TQU(Time)

  23. (23)

    TQUE([(1980, 0) − (2050, 30)] , (1980, 5), (1985, 6), (1990, 7), (1995, 6), (2000, 7), (2005, 8 ), (2010, 10), (2020, 13), (2030, 15))

  24. (24)

    QUE = TQUE(Time)

  25. (25)

    TQR([(1980, 30) − (2050, 60)], (1980, 33), (1985, 34), (1990, 45), (1995, 45), (2000, 47), (2005, 34), (2010, 46), (2020, 51), (2030, 56))

  26. (26)

    QR = TQR(Time)

  27. (27)

    GRWI = 0.015

  28. (28)

    GWI = GDP · GRWI

  29. (29)

    WI = INTEG(GWI, 2550)

  30. (30)

    CO = WI · 0.3

  31. (31)

    CP = WI · 0.15

  32. (32)

    CD = WI · 0.15

  33. (33)

    CM = WI · 0.2

  34. (34)

    CWT = IF THEN ELSE(Time > 2008, WI · 0.2, 0)

  35. (35)

    ERP = CWT/TW

  36. (36)

    P = TWS · 0.8

  37. (37)

    S = P · 0.45

  38. (38)

    T = P · 0.05

  39. (39)

    ENP = (S + CO + T)/TWS

  40. (40)

    REP = (CD + CM + CP)/TWS

  41. (41)

    WP = ENP + ERP + REP

  42. (42)

    CRPFA = 0.0131

  43. (43)

    CPFA = PFA · CRPFA

  44. (44)

    PFA = INTEG(CPFA, 98.39)

  45. (45)

    TQPFWD([(1980, 0) − (2050, 400)], (1980, 390), (1985, 362), (1990, 322), (1995, 294), (2000, 273), (2005, 255), (2010, 140), (2020, 129), (2030, 122))

  46. (46)

    QVPWD = TQVPWD(Time)

  47. (47)

    PFWD = QPFWD · PFA

  48. (48)

    CRIFA = −0.04

  49. (49)

    CIFA = IFA · CRIFA

  50. (50)

    IFA = INTEG(CIFA, 4.14)

  51. (51)

    TQIFWD([(1980, 0) − (2050, 2000)], (1980, 1066), (1985, 1024), (1990, 972), (1995, 911), (2000, 809), (2005, 1187), (2010, 1057), (2020, 0), (2030, 0))

  52. (52)

    QIFWD = TQIFWD(Time)

  53. (53)

    IFWD = QIFWD · IFA

  54. (54)

    PUWD = NR · 0.05

  55. (55)

    IEWD = BF + PUWD

  56. (56)

    UEWD = UP · QUE

  57. (57)

    GRRWS = 0.015

  58. (58)

    GRWS = RWS · GRRWS

  59. (59)

    RWS = INTEG(GRWS, 155)

  60. (60)

    GRDWS = −0.0008

  61. (61)

    GDWS = DWS · GRDWS

  62. (62)

    DWS = INTEG(GDWS, 26194)

  63. (63)

    GRPWS = 0.0035

  64. (64)

    GPWS = GRPWS · PWS

  65. (65)

    PWS = INTEG (GPWS, 7601)

  66. (66)

    SWS = DWS + PWS + RWS

  67. (67)

    GROWS = IF THEN ELSE (Time > 2005, 0.03, 0.01)

  68. (68)

    GOWS = GROWS · OWS

  69. (69)

    OWS = INTEG (GOWS, 20)

  70. (70)

    TWT([(1980, 0) − (2100, 100000)] , (1980, 0), (2019, 0), (2020, 4500), (2030, 92000))

  71. (71)

    WT = TWT (Time)

  72. (72)

    GRGWS = 0.0025

  73. (73)

    GGWS = GWS · GRGWS

  74. (74)

    GWS = INTEG(GGWS, 8882)

  75. (75)

    TWS = OWS + GWS + SWS + WT

  76. (76)

    GRDFA = 0.1

  77. (77)

    GDFA = DFA · GRDFA

  78. (78)

    DFA = INTEG(GDFA, 20)

  79. (79)

    DFWD = DFA · QDFWD/10000

  80. (80)

    OEWD = UEWD + DFWD

  81. (81)

    EWD = IEWD + OEWD

  82. (82)

    GRFIPA = 0.00041

  83. (83)

    GFIPA = FIPA · GRFIPA

  84. (84)

    FIPA = INTEG (GFIPA, 0.55)

  85. (85)

    TQFIWD([(1980, 0) − (2050, 1500)] , (1980, 906), (1985, 1099), (1990, 1192), (1995, 890), (2000, 888), (2005, 1285), (2010, 1278), (2020, 1218), (2030, 1165))

  86. (86)

    QFIWD = TQFIWD (Time)

  87. (87)

    FIWD = QFIWD · FIPA

  88. (88)

    CRVFA = 0.1

  89. (89)

    CVFA = VFA · CRVFA

  90. (90)

    VFA = INTEG(CVFA, 1.94)

  91. (91)

    TQVFWD([(1980, 0) − (2050, 1000)], (1980, 989), (1985, 900), (1990, 874), (1995, 843), (2000, 808), (2005, 327), (2010, 318), (2020, 308), (2030, 300))

  92. (92)

    QVFWD = TQVFWD(Time)

  93. (93)

    VFWD = QVFWD · VFA

  94. (94)

    IRWD = IFWD + PFWD +WWD

  95. (95)

    CRGA = 0.024

  96. (96)

    CGA = GA · CRGA

  97. (97)

    GA = INTEG(CGA, 0.65)

  98. (98)

    TQGWD([(1980, 0) − (2050, 400)], (1980, 382), (1985, 370), (1990, 352), (1995, 223), (2000, 217), (2005, 238), (2010, 205), (2020, 195), (2030, 187))

  99. (99)

    QGWD = TQGWD(Time)

  100. (100)

    GWD = QGWD · GA

  101. (101)

    CRFOA = 0.06

  102. (102)

    CFOA = FOA · CRFOA

  103. (103)

    FOA = INTEG(CFOA, 1.32)

  104. (104)

    TQFOWD([(1980, 0) − (2050, 400)] , (1980, 384), (1985, 379), (1990, 389), (1995, 240), (2000, 199), (2005, 193), (2010, 178), (2020, 168), (2030, 159))

  105. (105)

    QFOWD = TQFOWD(Time)

  106. (106)

    FOWD = QFOWD · FOA

  107. (107)

    CRSAA = 0.00064

  108. (108)

    CSAA = SAA·CRSAA

  109. (109)

    SAA = INTEG(CSAA, 272.69)

  110. (110)

    TQSAWD([(1980, 5) − (2050, 40)], (1980, 9), (1985, 10), (1990, 11), (1995, 11), (2000, 11), (2005, 12), (2010, 12), (2020, 14), (2030, 16))

  111. (111)

    QSAWD = TQSAWD(Time)

  112. (112)

    SAWD = SAA·QSAWD · 365/1000

  113. (113)

    CRBAA = 0.00039

  114. (114)

    CBAA = BAA · CRBAA

  115. (115)

    BAA = INTEG(CBAA, 34.23)

  116. (116)

    TQBAWD([(1980, 10) − (2050, 50)] , (1980, 19), (1985, 24), (1990, 26), (1995, 26), (2000, 28), (2005, 19), (2010, 30), (2020, 33), (2030, 36))

  117. (117)

    QBAWD = TQBAWD(Time)

  118. (118)

    BAWD = BAA · QBAWD · 365/1000

  119. (119)

    AHWD = BAWD + SAWD

  120. (120)

    FAFWD = FOWD + FIWD + AHWD + GWD

  121. (121)

    AWD = IRWD + FAFWD

  122. (122)

    IWD = IO · QIWD/10000

  123. (123)

    IW = IWD · 0.3

  124. (124)

    PWD = AWD + IWD + TIWD

  125. (125)

    UDWD = UP · QU · 365/1000

  126. (126)

    RDWD = RP · QR · 365/1000

  127. (127)

    DWD = RDWD + UDWD

  128. (128)

    TW = IW + DW

  129. (129)

    DW = DWD · 0.8

  130. (130)

    TWD = (3/WP)^(((63317 − (PWD + EWD + TDWD))/(1 − WP))·(WP/(PWD + EWD + TDWD)))·63317

  131. (131)

    WSR = IF THEN ELSE( TWS − TWD < 0, (TWD − TWS)/TWD, 0)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xj., Zhang, Jy., Liu, Jf. et al. Water resources planning and management based on system dynamics: a case study of Yulin city. Environ Dev Sustain 13, 331–351 (2011). https://doi.org/10.1007/s10668-010-9264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-010-9264-6

Keywords

Navigation