Skip to main content
Log in

Modeling Large Fire Frequency and Burned Area in Canadian Terrestrial Ecosystems with Poisson Models

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Large wildland fires are major disturbances that strongly influence the carbon cycling and vegetation dynamics of Canadian boreal ecosystems. Although large wildland fires have recently received much scrutiny in scientific study, it is still a challenge for researchers to predict large fire frequency and burned area. Here, we use monthly climate and elevation data to quantify the frequency of large fires using a Poisson model, and we calculate the probability of burned area exceeding a certain size using a compound Poisson process. We find that the Poisson model simulates large fire occurrence well during the fire season (May through August) using monthly climate, and the threshold probability calculated by the compound Poisson model agrees well with historical records. Threshold probabilities are significantly different among different Canadian ecozones, with the Boreal Shield ecozone always showing the highest probability. The fire prediction model described in this study and the derived information will facilitate future quantification of fire risks and help improve fire management in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., et al. (2001). Direct carbon emissions from Canadian forest fires, 1959 to 1999. Canadian Journal of Forest Research, 31, 512–525.

    Article  CAS  Google Scholar 

  2. Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V. E., & Yarie, J. (2002). Modeling the soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. Journal of Geophysical Research, 107, 8147. doi:10.1029/2001JD001244.

    Article  Google Scholar 

  3. Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., et al. (2007). The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. Journal of Geophysical Research, 112, G02029. doi:10.1029/2006JG000380.

    Article  Google Scholar 

  4. Thonicke, K., Venevsky, S., Sitch, S., & Cramer, W. (2001). The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661–677.

    Article  Google Scholar 

  5. Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314, 1130–1132.

    Article  CAS  Google Scholar 

  6. Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., et al. (2002). Large forest fires in Canada, 1959–1997. Journal of Geophysical Research, 107, 8149. doi:10.1029/2001JD000484.

    Article  Google Scholar 

  7. Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211. doi:10.1029/2004GL020876.

    Article  Google Scholar 

  8. Rupp, T. S., Chen, X., Oleson, M., & McGuire, A. D. (2007). Sensitivity of simulated boreal fire dynamics to uncertainties in climate drivers. Earth Interactions, 11, 1–21.

    Article  Google Scholar 

  9. Mollicone, D., Eva, H. D., & Achard, F. (2006). Human role in Russian wild fires. Nature, 440, 436–437.

    Article  CAS  Google Scholar 

  10. Calef, M. P., McGuire, A. D., & Chapin, F. S., III. (2008). Human influences on wildfire in Alaska from 1988 through 2005: An analysis of the spatial patterns of human impacts. Earth Interactions, 12, 1–17.

    Article  Google Scholar 

  11. Balshi, M. S., McGuire, A. D., Duffy, P. A., Flannigan, M., Kicklighter, D. W., & Melillo, J. M. (2009). The vulnerability of carbon storage in boreal North America during the 21st century to increases in wildfire activity. Global Change Biology, 15, 1491–1510.

    Article  Google Scholar 

  12. Podur, J., Martell, D. L., & Knight, K. (2002). Statistical quality control analysis of forest fire activity in Canada. Canadian Journal of Forest Research, 32, 195–205.

    Article  Google Scholar 

  13. Kasischke, E. S., & Turetsky, M. R. (2006). Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33, L09703. doi:10.1029/2006GL025677.

    Article  Google Scholar 

  14. Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., & Stocks, B. J. (2005). Future area burned in Canada. Climate Change, 72, 1–16.

    Article  CAS  Google Scholar 

  15. Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., et al. (1998). Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38, 1–13.

    Article  Google Scholar 

  16. Xiao, J., & Zhuang, Q. (2007). Drought effects on large fire activity in Canadian and Alaskan forests. Environment Research Letters, 2(044003), 6. doi:10.1088/1748-9326/2/4/044003.

    Google Scholar 

  17. Mandallaz, D., & Ye, R. (1997). Prediction of forest fires with Poisson models. Canadian Journal of Forest Research, 27, 1685–1694.

    Article  Google Scholar 

  18. Elsner, J. B., & Schmertmann, C. P. (1993). Improving extended range seasonal predictions of intense Atlantic hurricane activity. Weather and Forecasting, 8, 345–351.

    Article  Google Scholar 

  19. Alvarado, E., Sandberg, D. V., & Pickford, S. G. (1998). Modeling large forest fires as extreme events. Northwest Science, 72(Spec. Issue), 66–75.

    Google Scholar 

  20. Wiitala, M. R. (1999). Assessing the risk of cumulative burned acreage using the poisson probability model, USDA Forest Service Gen. Tech. Rep. PSW-GTR-173.

  21. Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G., & Long, D. G. (2001). Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire, 10, 329–342.

    Article  Google Scholar 

  22. Jiang, Y., Zhuang, Q., Flannigan, M. D., & Little, J. M. (2009). Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems. International Journal of Wildland Fire, 18, 992–1002.

    Article  Google Scholar 

  23. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., et al. (1999). The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82, 247–267.

    Article  Google Scholar 

  24. Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712.

    Article  Google Scholar 

  25. Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 55, University of East Anglia, Norwich, United Kingdom p 25.

  26. Serreze, M. C., & Hurst, C. M. (2000). Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. Journal of Climate, 13, 182–201.

    Article  Google Scholar 

  27. Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., et al. (2003). Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics. Tellus, 55B, 751–776.

    CAS  Google Scholar 

  28. Ecological Stratification Working Group (1995). A national ecological framework for Canada. Agriculture and Agri-Food Canada, Environment Canada, Ottawa, ON

  29. Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145, 280–297.

    Article  CAS  Google Scholar 

  30. Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254, 178–196.

    Article  Google Scholar 

  31. Pitman, J. (1993). Probability (p. 559). New York: Springer.

    Book  Google Scholar 

  32. Ross, S. M. (1989). Introduction to probability models (4th ed., p. 544). San Diego: Academic Press, Inc.

    Google Scholar 

  33. Alvarado-Celestino, E. (1992). Large forest fires: An analysis using extreme value theory and robust statistics, Ph. D. Dissertation, University of Washington, Seattle, Washington.

  34. Jiang, Y., & Zhuang, Q. (2011). Extreme value analysis of wildfires in Canadian boreal forest ecosystems. Canadian Journal of Forest Research, 41, 1836–1851.

    Article  Google Scholar 

  35. Gisborne, H. T. (1926). Lightning and forest fires in the northern Rocky Mountain Region. Monthly Weather Review, 54, 281–286.

    Article  Google Scholar 

  36. Running, S. W. (2006). Is global warming causing more, larger wildfires? Science, 313, 927–928.

    Article  CAS  Google Scholar 

  37. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.

    Article  CAS  Google Scholar 

  38. Rorig, M. L., & Ferguson, S. A. (1999). Characteristics of lightning and wildland fire ignition in the Pacific Northwest. Journal of Applied Meteorology, 38, 1565–1575.

    Article  Google Scholar 

  39. Díaz-Avalos, C., Peterson, D. L., Alvarado, E., Ferguson, S. A., & Besag, J. E. (2001). Space–time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research, 31, 1579–1593.

    Google Scholar 

  40. Rieman, B. E., Hessburg, P. F., Lee, D. C., Thurow, R. F., & Sedell, J. R. (2000). Toward an integrated classification of ecosystems: Defining opportunities for managing fish and forest health. Environmental Management, 25, 425–444.

    Article  Google Scholar 

  41. Veblen, T. T., Kitzberger, T., & Donnegan, J. (2000). Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecological Applications, 10, 1178–1195.

    Article  Google Scholar 

  42. Heyerdahl, E. K., Lertzman, K., & Karpuk, S. (2007). Local-scale controls of a low-severity fire regime (1750–1950), southern British Columbia, Canada. Ecoscience, 10, 40–47.

    Article  Google Scholar 

  43. Duffy, P. A., Walsh, J. E., Graham, J. M., Mann, D. H., & Rupp, T. S. (2005). Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecological Applications, 15, 1317–1330.

    Article  Google Scholar 

  44. Cumming, S. G. (2001). A parametric model of the fire-size distribution. Canadian Journal of Forest Research, 31, 1297–1303.

    Article  Google Scholar 

  45. Krawchuk, M., & Cumming, S. (2009). Disturbance history affects lightning fire initiation in the mixedwood boreal forest: Observations and simulations. Forest Ecology and Management, 257, 1613–1622.

    Article  Google Scholar 

  46. Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., & Ryan, M. G. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences USA, 108, 13165–13170.

    Article  CAS  Google Scholar 

  47. Preisler, H. K., Westerling, A. L., Gebert, K. M., Munoz-Arriola, F., & Holmes, T. P. (2011). Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire, 20, 508–517.

    Article  Google Scholar 

  48. Holden, Z. A., Morgan, P., Crimmins, M. A., Steinhorst, R. K., & Smith, A. M. S. (2007). Fire season precipitation variability influences fire extent and severity in a large southwestern wilderness area, United States. Geophysical Research Letters, 34, L16708. doi:10.1029/2007GL030804.

    Article  Google Scholar 

  49. Kilinc, M., & Beringer, J. (2007). The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation and fire scars. Journal of Climate, 20, 1161–1173.

    Article  Google Scholar 

  50. Dwire, K. A., & Kauffman, J. B. (2003). Fire and riparian ecosystems in landscapes of the western USA. Forest Ecology and Management, 178, 61–74.

    Article  Google Scholar 

  51. Bella, C. M. D., Jobbágy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15, 192–199.

    Article  Google Scholar 

  52. Miyanishi, K., & Johnson, E. A. (2001). Comment—A reexamination of the effects of fire suppression in the boreal forest. Canadian Journal of Forest Research, 31, 1462–1466.

    Google Scholar 

  53. Bentz, B. J., Regniere, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., et al. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. Bioscience, 60, 602–613.

    Article  Google Scholar 

  54. Logan, J. A., Régnière, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1, 130–137.

    Article  Google Scholar 

Download references

Acknowledgments

The fire databases are used courtesy of the Canadian provincial, territorial, and federal fire management agencies. This research is supported by NSF Arctic System Science Program (NSF252 0554811) and NSF Carbon and Water in the Earth Program (NSF-0630319). The high-performance computing is supported by the Rosen Center for Advanced Computing (RCAC) at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Zhuang, Q. & Mandallaz, D. Modeling Large Fire Frequency and Burned Area in Canadian Terrestrial Ecosystems with Poisson Models. Environ Model Assess 17, 483–493 (2012). https://doi.org/10.1007/s10666-012-9307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9307-5

Keywords

Navigation