Skip to main content
Log in

Hazard estimation in urban home garden soils in an industrial area using microarthropods, soil properties and GIS modelling: an integrated approach

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of soil microarthropods as indicators of soil pollution in home gardens of an industrial area has been covered in this study. Soil samples were collected from 25 home gardens in three zones in Eloor during summer and North East monsoon from 2014 to 2018, for the study of soil microarthropods, soil properties, soil nutrients, and trace elements. The relationships among QBS-ar, microarthropod abundance, soil properties, and soil nutrients, were used to estimate the pollution hazard of the industrial area. The microarthropods present in the study area were Coleoptera, Hymenoptera, Diplopoda, and Araneae. A prominent study area feature was the absence of Collembola and Acari. The QBS-ar index score in these regions showed that the home gardens located adjacent to the industrial area showed low soil quality, with soil quality class values ranging from 1 to 2 throughout the study period. Discriminant analysis of soil nutrients with soil properties and microarthropod abundance showed that in Zone 1 and Zone 2, the data in 2018 was very well discriminated compared to other years. The hazard assessment in the Eloor region showed various levels of hazard zonation: Zone 1 with high-hazard and medium-hazard areas, Zone 2 with medium-hazard areas, and Zone 3 with low- and medium-hazard areas. The study is one of the first kinds that have used QBS-ar scores and soil properties along with soil nutrients and trace elements for estimating the level of hazard in home garden agroecosystems and thus points to an easy, simple, and practical approach in the monitoring and management of soil ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The dataset used for the study is with the first author and is presented as supplementary data.

References

  • Abbas, T., Akmal, M., Aziz, I., Iqbal, M., & Ahmed, H. (2021). Risk assessment and GIS-based mapping of heavy metals in the secondary rock deposits derived soils of Islamabad, Pakistan. Environmental Earth Sciences, 80, 1–9. https://doi.org/10.1007/s12665-021-09397-w

    Article  CAS  Google Scholar 

  • Adedeji, O. H., Olayinka, O. O., & Tope-Ajayi, O. O. (2019). Spatial distribution and health risk assessment of soil pollution by heavy metals in Ijebu-Ode, Nigeria. Journal of Health and Pollution9(22).

  • Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., & Smedley, P. (2005). Essentials of medical geology. In O. Selinus (Ed.), Academic Press.

  • Austruy, A., Laplanche, C., Mombo, S., Dumat, C., Deola, F., & Gers, C. (2016). Ecological changes in historically polluted soils: Metal (loid) bioaccumulation in microarthropods and their impact on community structure. Geoderma, 271, 181–190. https://doi.org/10.1016/j.geoderma.2016.02.011

    Article  CAS  Google Scholar 

  • Badejo, M. A., Obilade, T. O., & Oblubakin, B. A. (1997). Spatial distribution and abundance of mites and springtails under temperature and moisture regimes in a tropical rain floor. Tropical Ecology, 38(1), 31–38.

    Google Scholar 

  • Badejo, M. A. (1990). Seasonal abundance of soil mites (Acarina) in two contrasting environments. Biotropica, 382–390. https://doi.org/10.2307/2388555

  • Bandhopadhyaya, I., Choudhuri, D. K., & Ponge, J. F. (2002). Effect of some chemical factors and agricultural practices on Collembola in a multiple cropping progamme in West Bengal (India). Eurasian Journal of Soil Biology, 38, 111–117. https://doi.org/10.1016/S1164-5563(01)01114-1

    Article  Google Scholar 

  • Bardgett, R. D., & Cook, R. (1998). Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10(3), 263–276. https://doi.org/10.1016/S0929-1393(98)00125-5

    Article  Google Scholar 

  • Blakely, J. K., Neher, D. A., & Spongberg, A. L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Applied Soil Ecology, 21(1), 71–88. https://doi.org/10.1016/S0929-1393(02)00023-9

    Article  Google Scholar 

  • Cakir, M., & Makineci, E. (2017). Community structure and seasonal variations of soil microarthropods during environmental changes. Applied Soil Ecology, 123, 313–317. https://doi.org/10.1016/j.apsoil.2017.06.036

    Article  Google Scholar 

  • Caruso, T., Migliorini, M., Bucci, C., & Bargagli, R. (2009). Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: The example of oribatid mites in an abandoned mining and smelting area. Environmental Pollution, 157(11), 2939–2948. https://doi.org/10.1016/j.envpol.2009.06.010

    Article  CAS  Google Scholar 

  • Chandrakala, M., Ramesh, M., Sujatha, K., Hegde, R., & Singh, S. K. (2018). Soil fertility evaluation under different land use system in tropical humid region of Kerala, India. International Journal of Plant & Soil Science, 24(4), 1–13. https://doi.org/10.9734/IJPSS/2018/40099

    Article  Google Scholar 

  • Cortet, J., Joffre, R., Elmholt, S., Coeurdassier, M., Scheifler, R., & Krogh, P. H. (2006). Interspecific relationships among soil invertebrates influence pollutant effects of phenanthrene. Environmental Toxicology and Chemistry, 25(1), 120–127.

    Article  CAS  Google Scholar 

  • Coulson, S. J., Fjellberg, A., Melekhina, E. N., Taskaeva, A. A., Lebedeva, N. V., Belkina, O. A., Seniczak, A., & Gwiazdowicz, D. J. (2015). Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden. Svalbard. Biodiversity and Conservation, 24(7), 1671–1690. https://doi.org/10.1007/s10531-015-0885-9

    Article  Google Scholar 

  • Crossley, D. A., Mueller, B. R., & Perdue, J. C. (1992). Biodiversity of microarthropods in agricultural soils: Relations to processes. Agriculture, Ecosystems & Environment, 40(1–4), 37–46. https://doi.org/10.1016/0167-8809(92)90082-M

    Article  Google Scholar 

  • Crouau, Y., & Pinelli, E. (2008). Comparative ecotoxicity of three polluted industrial soils for the Collembola Folsomia candida. Ecotoxicology and Environmental Safety, 71(3), 643–649. https://doi.org/10.1016/j.ecoenv.2008.01.017

  • Department of Agriculture & Cooperation. (2011). Methods manual: Soil testing in India. Ministry of Agriculture, Government of India. https://agriculture.uk.gov.in/files/Soil_Testing_Method_by_Govt_of_India.pdf

  • Fajardo, C., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., & Martín, M. (2019). Pb, Cd, and Zn soil contamination: Monitoring functional and structural impacts on the microbiome. Applied Soil Ecology, 135, 56–64. https://doi.org/10.1016/j.apsoil.2018.10.022

  • Ferreira, J. G. (2010). Impact of the mine pollution on the abundance and community structure of ground-dwelling spiders (Araneae): Potential use as bioindicators. http://hdl.handle.net/10451/3378

  • Fisk, M. C., Kessler, W. R., Goodale, A., Fahey, T. J., Groffman, P. M., & Driscoll, C. T. (2006). Landscape variation in microarthropod response to calcium addition in a northern hardwood forest ecosystem. Pedobiologia, 50(1), 69–78. https://doi.org/10.1016/j.pedobi.2005.11.001

    Article  CAS  Google Scholar 

  • Florian, N., Ladányi, M., Ittzés, A., Kröel-Dulay, G., Ónodi, G., Mucsi, M., & Dombos, M. (2019). Effects of single and repeated drought on soil microarthropods in a semi-arid ecosystem depend more on timing and duration than drought severity. PLoS One, 14(7), e0219975. https://doi.org/10.1371/journal.pone.0219975

    Article  CAS  Google Scholar 

  • Ghilarov, M. S. (1975). General trends of changes in soil animal population arable land Progress in soil zoology. Procedings of the 5th International Colloquium on soil zoology held in Prague, 1973, 31–39. https://doi.org/10.1007/978-94-010-1933-0_3

    Article  Google Scholar 

  • Hedlund, K., Griffiths, B., Christensen, S., Scheu, S., Setala, H., Tscharntke, T., & Verhoef, H. (2004). Trophic interactions in changing landscapes: Responses of soil food webs. Basic and Applied Ecology, 5(6), 495–503. https://doi.org/10.1016/j.baae.2004.09.002

    Article  Google Scholar 

  • Jackson, M. L. (1958). Soil chemical analysis. Prentice Hall, Inc. https://doi.org/10.1002/jpln.19590850311

  • Jamal, A., Delavar, M. A., Naderi, A., Nourieh, N., Medi, B., & Mahvi, A. H. (2018). Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Human and Ecological Risk Assessment: An International Journal. http://www.tandfonline.com/loi/bher20

  • Kumar, R., Joseph, M. M., Gireesh Kumar, T. R., Renjith, K. R., Manju, M. N., & Chandramohanakumar, N. (2010). Spatial variability and contamination of heavy metals in the inter-tidal systems of a tropical environment. International Journal of Environmental Research, 4(4), 691–700.

    Google Scholar 

  • Lakshmi, G., Okafor, B. N., & Visconti, D. (2020). Soil microarthropods and nutrient cycling. In S. Fahad, et al. (Eds.), Environment, climate, plant and vegetation growth (pp. 453–472). Springer. https://doi.org/10.1007/978-3-030-49732-3_18

  • Lakshmi, G., & Joseph, A. (2017). Soil microarthropods as indicators of soil quality of tropical home gardens in a village in Kerala. India. Agroforestry Systems, 91(3), 439–450. https://doi.org/10.1007/s10457-016-9941-z

    Article  Google Scholar 

  • Lawrence, K. L., & Wise, D. H. (2000). Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia, 44(1), 33–39. https://doi.org/10.1078/S0031-4056(04)70026-8

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test forzinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.

    Article  CAS  Google Scholar 

  • Macfadyen, A. (1961). Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology, 171–184. https://doi.org/10.2307/2120

  • Mackay, W. P., Silva, S., Lightfoot, D. C., Pagani, M. I., & Whitford, W. G. (1986). Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. American Midland Naturalist, 45–56. https://doi.org/10.2307/2425936

  • Melekhina, E. N., Belykh, E. S., Markarova, M. Y., Taskaeva, A. A., Rasova, E. E., Baturina, O. A., & Velegzhaninov, I. O. (2021). Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic. Scientific Reports, 11(1), 19620. https://doi.org/10.1038/s41598-021-98680-8

    Article  CAS  Google Scholar 

  • Menta, C., Conti, F. D., Pinto, S., & Bodini, A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780. https://doi.org/10.1016/j.ecolind.2017.11.030

    Article  CAS  Google Scholar 

  • Moore, J. C., Walter, D. E., & Hunt, H. W. (1988). Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual Review of Entomology, 33(1), 419–435. https://doi.org/10.1146/annurev.en.33.010188.002223

    Article  Google Scholar 

  • Narula, A., Vats, L. K., & Handa, S. (1998). Collembolans and mites of deciduous forest stand. Indian Journal Forestry., 21(2), 147–149.

    Google Scholar 

  • Nathan, V. M., Stecker, J. A., & Sun, Y. (2012). Soil testing in Missouri, University extension, Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri. https://hdl.handle.net/10355/50590

  • Neeraj, A., Hiranmai, R. Y., & Iqbal, K. (2023). Comprehensive assessment of pollution indices, sources apportionment and ecological risk mapping of heavy metals in agricultural soils of Raebareli District, Uttar Pradesh, India, employing a GIS approach. Land Degradation & Development, 34(1), 173–195. https://doi.org/10.1002/ldr.4451

    Article  Google Scholar 

  • Noble, J. C., Whitford, W. G., & Kaliszweski, M. (1996). Soil and litter microarthropod populations from two contrasting ecosystems in semi-arid eastern Australia. Journal of Arid Environments, 32(3), 329–346. https://doi.org/10.1006/jare.1996.0027

    Article  Google Scholar 

  • Paoletti, M. G., Osler, G. H., Kinnear, A., Black, D. G., Thomson, L. J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P., & D’Inca, A. (2007). Detritivores as indicators of landscape stress and soil degradation. Australian Journal of Experimental Agriculture, 47(4), 412–423. https://doi.org/10.1071/EA05297

    Article  Google Scholar 

  • Parisi, V. (2001). La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta naturalia de l’Ateneo Parmense, 37(3–4), 87–106.

    Google Scholar 

  • Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture Ecosystems and Environment, 105(1), 323–333. https://doi.org/10.1016/j.agee.2004.02.002

    Article  Google Scholar 

  • Parisi, V., Menta, C., Gardi, C., & Jacomini, C. (2003). Evaluation of soil quality and biodiversity in Italy: The biological quality of soil index (QBS) approach. In R. Francaviglia (Ed.) Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis (pp. 541–550).

  • Parker, F. W., Nelson, W. L., Winters, E., & Miles, I. E. (1951). The broad interpretation and application of soil test information. Agronomy Journal, 43(3), 105–112.

    Article  CAS  Google Scholar 

  • Perrodin, Y., Boillot, C., Angerville, R., Donguy, G., & Emmanuel, E. (2011). Ecological risk assessment of urban and industrial systems: A review. Science of the Total Environment, 409(24), 5162–5176. https://doi.org/10.1016/j.scitotenv.2011.08.053

    Article  CAS  Google Scholar 

  • Pokarzhevskii, A. D., & Krivolutskii, D. A. (1997). Problems of estimating and maintaining biodiversity of soil biota in natural and agroecosystems: A case study of chernozem soil. Agriculture, Ecosystems & Environment, 62(2–3), 127–133. https://doi.org/10.1016/S0167-8809(96)01139-5

    Article  Google Scholar 

  • Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Semenyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97. https://doi.org/10.1016/j.ejsobi.2017.09.001

    Article  Google Scholar 

  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., ... & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management9, 76–84. https://doi.org/10.1016/j.enmm.2017.12.006

  • Ramamoorthy, B., & Bajaj, J. C. (1969). Available nitrogen, phosphorus and potassium status of Indian soils. Fertiliser news, 14(4), 1–12.

  • Rincy, T. T., & Sheela, D. (2011). Comparison of heavy metals and major nutrients in different parts of the medicinal plant Ricinus Communis L collected from an industrial belt (Eloor) and coastal area (Wellington Island) of Kerala. The Journal of Indian Botanical Society, 90(1 and 2), 113–115.

    Google Scholar 

  • Santamaria-Ulecia, J. M., Moraza-Zorrilla, M. L., Elustondo, D., Baquero-Martin, E., Jordana, R., Lasheras, E., Bermejo, R., & Arino-Plana, A. H. (2012). Diversity of Acari and Collembola along a pollution gradient in soils of a pre-Pyrenean forest ecosystem. Environmental Engineering and Management Journal, 165, 174–181. https://doi.org/10.1016/j.envpol.2011.12.010

  • Santorufo, L., Van Gestel, C. A., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042

  • Santos, P. F., & Whitford, W. G. (1983). Seasonal and spatial variation in the soil microarthropod fauna of the White Sands National Monument. The Southwestern Naturalist, 417–421. https://doi.org/10.2307/3670821

  • Sarkar, S. K., Chakrobarty, K., & Moitra, M. N. (2016). A study on abundance and group diversity of soil microarthropods at four different soil habitats in North Dinajpur, West Bengal, India. International Journal of Experimental Research, 7, 32–37.

    Google Scholar 

  • Singh, U. R., & Tripathi, B. D. (1978). Effects of industrial effluents on the population density of soil microarthropods. Environmental Conservation, 5(3), 229–231. https://doi.org/10.1017/S0376892900006020

    Article  CAS  Google Scholar 

  • Sobha, V., & Anish, M. (2003). Imprints of environmental pollution on laterite/clay and groundwater of Eloor-Kalamassery Industrial Belt, Kerala State, India. Environmental Geology, 44, 914–918. https://doi.org/10.1007/s00254-003-0834-x

  • Soil Survey Staff (USDA), 1975. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 466, Washington, DC, p. 754.

    Google Scholar 

  • Song, J., Zhu, Q., Jiang, X., Zhao, H., Liang, Y., Luo, Y., & Zhao, L. (2017). GIS-based heavy metals risk assessment of agricultural soils-a case study of Baguazhou. Nanjing. Acta Pedologica Sinica, 54(1), 81–91.

    Google Scholar 

  • Strong, J. (1967). Ecology of terrestrial arthropods at Palmer Station. Antarctic Peninsula, Entomology of Antractica, 10, 357–371. https://doi.org/10.1029/AR010p0357

    Article  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25(8), 328.

    Google Scholar 

  • Tarazona, J. V., & Vega, M. M. (2002). Hazard and risk assessment of chemicals for terrestrial ecosystems. Toxicology, 181, 187–191. https://doi.org/10.1016/S0300-483X(02)00279-2

    Article  Google Scholar 

  • Thomas, D. R., Sunil, B., & Latha, C. (2011). Physico-chemical analysis of well water at Eloor industrial area-seasonal study. Current World Environment, 6(2), 259–264.

    Article  CAS  Google Scholar 

  • Tsiafouli, M. A., Kallimanis, A. S., Katana, E., Stamou, G. P., & Sgardelis, S. P. (2005). Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Applied Soil Ecology, 29(1), 17–26. https://doi.org/10.1016/j.apsoil.2004.10.002

    Article  Google Scholar 

  • Umadevi, A. G., George, M., Dharmalingam, P., Abraham, J. P., Rajagopalan, M., Balakrishnan, D., Haridasan, P., & Pillai, P. M. B. (2010). An investigation of the quality of underground water at Eloor in Ernakulum District of Kerala. India. Journal of Chemistry, 7(3), 908–914.

    CAS  Google Scholar 

  • Verhoef, H. A., & Brussaard, L. (1990). Decomposition and nitrogen mineralization in natural and agroecosystems: The contribution of soil animals. Biogeochemistry, 11(3), 175–211. https://doi.org/10.1007/BF00004496

    Article  Google Scholar 

  • Verhoef, H. A., & Van Selm, A. J. (1983). Distribution and population dynamics of Collembola in relation to soil moisture. Ecography, 6(4), 387–388. https://doi.org/10.1111/j.1600-0587.1983.tb01234.x

    Article  Google Scholar 

  • Wang, S., Tan, Y., Fan, H., Ruan, H., & Zheng, A. (2015). Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Applied Soil Ecology, 89, 69–75. https://doi.org/10.1016/j.apsoil.2015.01.004

    Article  CAS  Google Scholar 

  • Wasserstrom, H., Whitford, W. G., & Steinberger, Y. (2016). Spatiotemporal variations of soil microarthropod communities in the Negev Desert. Pedosphere, 26(4), 451–461. https://doi.org/10.1016/S1002-0160(15)60056-X

    Article  Google Scholar 

  • Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677–678. https://doi.org/10.2136/sssaj1965.03615995002900060025x

    Article  CAS  Google Scholar 

  • Yan, S., Singh, A. N., Fu, S., Liao, C., Wang, S., Li, Y., Cui, Y., & Hu, L. (2012). A soil fauna index for assessing soil quality. Soil Biology and Biochemistry, 47, 158–165. https://doi.org/10.1016/j.soilbio.2011.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cochin University of Science and Technology (CUSAT), Kerala, India for providing the research facilities.

Funding

The first author acknowledges funding from University Grants Commission (UGC), Government of India (Grant No. F.15–6(DEC 2013)/2014(NET)).

Author information

Authors and Affiliations

Authors

Contributions

Lakshmi Gopakumar has collected the soil samples, written the manuscript, analysed the soil and microarthropod samples, done data analysis, discussion, and interpretation. Ammini Joseph has guided the research work.

Corresponding author

Correspondence to Lakshmi Gopakumar.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopakumar, L., Joseph, A. Hazard estimation in urban home garden soils in an industrial area using microarthropods, soil properties and GIS modelling: an integrated approach. Environ Monit Assess 196, 522 (2024). https://doi.org/10.1007/s10661-024-12691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12691-2

Keywords

Navigation