Skip to main content

Advertisement

Log in

Mapping soil trace metal distribution using remote sensing and multivariate analysis

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Abuzaid, A. S., Mazrou, Y. S., El Baroudy, A. A., Ding, Z., & Shokr, M. S. (2022). Multi-indicator and geospatial based approaches for assessing variation of land quality in arid agroecosystems. Sustainability, 14(10), 5840.

    Article  CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26(3), 405–414.

    Article  CAS  Google Scholar 

  • Adnan, M., Xiao, B., Xiao, P., Zhao, P., & Bibi, S. (2022). Heavy metal, waste, COVID-19, and rapid industrialization in this modern era—Fit for sustainable future. Sustainability, 14(8), 4746.

    Article  CAS  Google Scholar 

  • Aggarwal, S. (2004). Principles of remote sensing. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 23(2), 23–28.

    Google Scholar 

  • Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 17006.

    Article  CAS  Google Scholar 

  • Alemu, R., Gelaw, A. M., Gashu, D., Tafere, K., Mossa, A. W., Bailey, E. H., ..., & Lark, R. M. (2022). Sub-sampling a large physical soil archive for additional analyses to support spatial mapping; a pre-registered experiment in the Southern Nations, Nationalities, and Peoples Region (SNNPR) of Ethiopia. Geoderma, 424, 116013.

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881.

    Article  CAS  Google Scholar 

  • Allee, K. D., Do, C., & Raymundo, F. G. (2022). Principal component analysis and factor analysis in accounting research. Journal of Financial Reporting, 7(2), 1–39.

  • Alloway, B. J. (Ed.). (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4470-7_24

  • Anaman, R., Peng, C., Jiang, Z., Liu, X., Zhou, Z., Guo, Z., & Xiao, X. (2022). Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Science of the Total Environment, 823, 153759.

    Article  CAS  Google Scholar 

  • Armenise, E., Redmile-Gordon, M. A., Stellacci, A. M., Ciccarese, A., & Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91–98.

    Article  Google Scholar 

  • Artiola, J. F., Walworth, J. L., Musil, S. A., & Crimmins, M. A. (2019). Soil and land pollution. In Environmental and pollution science (pp. 219–235). Academic Press.

  • Arumugam, T., Kinattinkara, S., Nambron, D., Velusamy, S., Shanmugamoorthy, M., Pradeep, T., & Mageshkumar, P. (2022). An integration of soil characteristics by using GIS based geostatistics and multivariate statistics analysis sultan Batheri block, Wayanad District India. Urban Climate, 46, 101339.

    Article  Google Scholar 

  • Awais, M., Naqvi, S. M. Z. A., Zhang, H., Li, L., Zhang, W., Awwad, F. A., ... & Hu, J. (2023). AI and machine learning for soil analysis: an assessment of sustainable agricultural practices. Bioresources and Bioprocessing, 10(1), 90.

  • Awasthi, G., Nagar, V., Mandzhieva, S., Minkina, T., Sankhla, M. S., Pandit, P. P., ..., & Srivastava, S. (2022). Sustainable amelioration of heavy metals in soil ecosystem: Existing developments to emerging trends. Minerals, 12(1), 85.

  • Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298

    Article  Google Scholar 

  • Barra, I., Haefele, S. M., Sakrabani, R., & Kebede, F. (2021). Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances–A review. TrAC Trends in Analytical Chemistry, 135, 116166. https://doi.org/10.1016/j.trac.2020.116166

    Article  CAS  Google Scholar 

  • Bhadra, B. K., Pathak, S., Karunakar, G., & Sharma, J. R. (2013). ASTER data analysis for mineral potential mapping around Sawar-Malpura area, Central Rajasthan. Journal of the Indian Society of Remote Sensing, 41(2), 391–404. https://doi.org/10.1007/s12524-012-0237-0

    Article  Google Scholar 

  • Bhat, S. A., Hassan, T., & Majid, S. (2019). Heavy metal toxicity and their harmful effects on living organisms–A review. International Journal of Medical Science and Diagnosis Research, 3(1), 106–122.

    Google Scholar 

  • Boente, C., Salgado, L., Romero-Macías, E., Colina, A., López-Sánchez, C. A., & Gallego, J. L. R. (2020). Correlation between geochemical and multispectral patterns in an area severely contaminated by former Hg-As mining. ISPRS International Journal of Geo-Information, 9(12), 739. https://doi.org/10.3390/ijgi9120739

    Article  Google Scholar 

  • Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., & van Wesemael, B. (2019). Imaging spectroscopy for soil mapping and monitoring. Surveys in Geophysics, 40, 361–399.

    Article  Google Scholar 

  • Chen, Y., Guerschman, J. P., Cheng, Z., & Guo, L. (2019). Remote sensing for vegetation monitoring in carbon capture storage regions: A review. Applied Energy, 240, 312–326.

    Article  CAS  Google Scholar 

  • Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., & Kim, K. W. (2008). Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222–3233.

  • Collins, A. L., Blackwell, M., Boeckx, P., Chivers, C. A., Emelko, M., Evrard, O., ..., & Zhang, Y. (2020). Sediment source fingerprinting: Benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 20, 4160–4193.

  • Crowley, J., Brickey, D., & Rowan, L. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29, 121–134. https://doi.org/10.1016/j.ecss.2010.03.011

    Article  CAS  Google Scholar 

  • Davis, H. T., Aelion, C. M., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157(8–9), 2378–2385.

    Article  CAS  Google Scholar 

  • Delgado, J., Nieto, J. M., & Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuarine, Coastal and Shelf Science, 88(1), 71–83.

    Article  CAS  Google Scholar 

  • Deng, W., Wang, F., & Liu, W. (2023). Identification of factors controlling heavy metals/metalloid distribution in agricultural soils using multi-source data. Ecotoxicology and Environmental Safety, 253, 114689.

    Article  CAS  Google Scholar 

  • Erdogan Erten, G., Yavuz, M., & Deutsch, C. V. (2022). Combination of machine learning and kriging for spatial estimation of geological attributes. Natural Resources Research, 31(1), 191–213.

    Article  Google Scholar 

  • Escadafal, R., Girard, M. C., & Courault, D. (1989). Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sensing of Environment, 27(1), 37–46. https://doi.org/10.1016/0034-4257(89)90035-7

    Article  Google Scholar 

  • Huete, A. R., & Escadafal, R. (1991). Assessment of biophysical soil properties through spectral decomposition techniques. Remote Sensing of Environment, 35(2-3), 149–159.

  • Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone Iran. Catena, 121, 88–98.

    Article  CAS  Google Scholar 

  • Fang, Y., Xu, L., Peng, J., Wang, H., Wong, A., & Clausi, D. A. (2018). Retrieval and mapping of heavy metal concentration in soil using time series landsat 8 imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 335–340.

  • Fang, Y., Hu, Z., Xu, L., Wong, A., & Clausi, D. A. (2019). Estimation of iron concentration in soil of a mining area from UAV-based hyperspectral imagery. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) (pp. 1–5). IEEE.

  • Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: A review. Environmental Monitoring and Assessment, 187, 1–21.

    Article  CAS  Google Scholar 

  • Gholizadeh, A., & Kopačková, V. (2019). Detecting vegetation stress as a soil contamination proxy: A review of optical proximal and remote sensing techniques. International Journal of Environmental Science and Technology, 16, 2511–2524.

    Article  Google Scholar 

  • Ghrefat, H., Awawdeh, M., Howari, F., & Al-Rawabdeh, A. (2023). Mineral exploration using multispectral and hyperspectral remote sensing data. In Geoinformatics for Geosciences (pp. 197–222). Elsevier.

  • Gokhberg, K., Kolorenč, P., Kuleff, A. I., & Cederbaum, L. S. (2014). Site-and energy-selective slow-electron production through intermolecular Coulombic decay. Nature, 505(7485), 661–663.

    Article  CAS  Google Scholar 

  • Goodarzi, R., Mokhtarzade, M., & Valadan Zoej, M. J. (2015). A robust fuzzy neural network model for soil lead estimation from spectral features. Remote Sensing, 7(7), 8416–8435.

    Article  Google Scholar 

  • Grunwald, S., Thompson, J. A., & Boettinger, J. L. (2011). Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal, 75(4), 1201–1213.

    Article  Google Scholar 

  • Guan, Z., Wang, Y., & Stuedlein, A. W. (2022). Efficient three-dimensional soil liquefaction potential and reconsolidation settlement assessment from limited CPTs considering spatial variability. Soil Dynamics and Earthquake Engineering, 163, 107518.

    Article  Google Scholar 

  • Hou, D., O’Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 231, 1188–1200.

    Article  CAS  Google Scholar 

  • Hou, F., Zhang, Y., Zhou, Y., Zhang, M., Lv, B., & Wu, J. (2022). Review on Infrared Imaging Technology. Sustainability, 14(18), 11161.

    Article  Google Scholar 

  • Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., & Yang, X. (2015). An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials, 299, 540–549.

    Article  CAS  Google Scholar 

  • Huang, S., Xiao, L., Zhang, Y., Wang, L., & Tang, L. (2021). Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis. Science of the Total Environment, 789, 147937.

    Article  CAS  Google Scholar 

  • Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706–719.

    Article  CAS  Google Scholar 

  • Hussain, M., Liu, S., Ashraf, U., Ali, M., Hussain, W., Ali, N., & Anees, A. (2022). Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type. Energies, 15(12), 4501.

    Article  Google Scholar 

  • Inoue, Y. (2020). Satellite-and drone-based remote sensing of crops and soils for smart farming–A review. Soil Science and Plant Nutrition, 66(6), 798–810.

    Article  Google Scholar 

  • Janssen, R. P., Peijnenburg, W. J., Posthuma, L., & Van Den Hoop, M. A. (1997). Equilibrium partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environmental Toxicology and Chemistry: An International Journal, 16(12), 2470–2478.

    Article  CAS  Google Scholar 

  • Jeliazkov, A., Gavish, Y., Marsh, C. J., Geschke, J., Brummitt, N., Rocchini, D., ..., & Henle, K. (2022). Sampling and modelling rare species: Conceptual guidelines for the neglected majority. Global change biology, 28(12), 3754–3777.

  • Jose, S., Joshy, D., Narendranath, S. B., & Periyat, P. (2019). Recent advances in infrared reflective inorganic pigments. Solar Energy Materials and Solar Cells, 194, 7–27.

    Article  CAS  Google Scholar 

  • Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., & Dormann, C. F. (2022). Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 5, 100018.

    Article  Google Scholar 

  • Kazemi, F., & Hosseinpour, N. (2022). GIS-based land-use suitability analysis for urban agriculture development based on pollution distributions. Land Use Policy, 123, 106426.

    Article  Google Scholar 

  • Keshavarzi, A., Kumar, V., Ertunç, G., & Brevik, E. C. (2021). Ecological risk assessment and source apportionment of heavy metals contamination: An appraisal based on the Tellus soil survey. Environmental Geochemistry and Health, 43(5), 2121–2142.

    Article  CAS  Google Scholar 

  • Khan, S., Naushad, M., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–A review. Journal of Hazardous Materials, 417, 126039.

    Article  CAS  Google Scholar 

  • Khanlari, Z. V., & Jalali, M. (2008). Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Archives of Agronomy and Soil Science, 54(1), 19–32.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40, 2395–2420.

    Article  CAS  Google Scholar 

  • Krami, L. K., Amiri, F., Sefiyanian, A., Shariff, A. R. B. M., Tabatabaie, T., & Pradhan, B. (2013). Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. Environmental Monitoring and Assessment, 185, 9871–9888.

    Article  CAS  Google Scholar 

  • Kumar, S. (2022). Effective hedging strategy for us treasury bond portfolio using principal component analysis. Academy of Accounting and Financial Studies, 26(1).

  • Lamine, S., Petropoulos, G. P., Brewer, P. A., Bachari, N. E. I., Srivastava, P. K., Manevski, K., ..., & Macklin, M. G. (2019). Heavy metal soil contamination detection using combined geochemistry and field spectroradiometry in the United Kingdom. Sensors, 19(4), 762. https://doi.org/10.3390/s19040762

  • Lasalvia, M., Capozzi, V., & Perna, G. (2022). A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Applied Sciences, 12(11), 5345.

    Article  CAS  Google Scholar 

  • Levi, N., Karnieli, A., & Paz-Kagan, T. (2022). Airborne imaging spectroscopy for assessing land-use effect on soil quality in drylands. ISPRS Journal of Photogrammetry and Remote Sensing, 186, 34–54.

    Article  Google Scholar 

  • Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua County in Taiwan. Landscape and Urban Planning, 62(1), 19–35.

    Article  Google Scholar 

  • Liu, K., Zhao, D., Fang, J. Y., Zhang, X., Zhang, Q. Y., & Li, X. K. (2017). Estimation of heavy-metal contamination in soil using remote sensing spectroscopy and a statistical approach. Journal of the Indian Society of Remote Sensing, 45(5), 805–813. https://doi.org/10.1007/s12524-016-0648-4

    Article  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Liu, Z., Lu, Y., Peng, Y., Zhao, L., Wang, G., & Hu, Y. (2019). Estimation of soil heavy metal content using hyperspectral data. Remote Sensing, 11(12), 1464. https://doi.org/10.3390/rs11121464

    Article  Google Scholar 

  • Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A. X., & Chen, M. (2019). Reflections and speculations on the progress in geographic information systems (GIS): A geographic perspective. International Journal of Geographical Information Science, 33(2), 346–367.

    Article  Google Scholar 

  • Luo, X., Wu, C., Lin, Y., Li, W., Deng, M., Tan, J., & Xue, S. (2023). Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. Journal of Environmental Sciences, 125, 662–677.

    Article  CAS  Google Scholar 

  • Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80–110.

    Google Scholar 

  • Madeira, J., Bédidi, A., Cervelle, B., Pouget, M., & Flay, N. (1997). Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal of Remote Sensing, 18, 2835–2852. https://doi.org/10.1080/014311697217369

    Article  Google Scholar 

  • Malinconico, S., Paglietti, F., Serranti, S., Bonifazi, G., & Lonigro, I. (2022). Asbestos in soil and water: A review of analytical techniques and methods. Journal of Hazardous Materials, 436, 129083.

    Article  CAS  Google Scholar 

  • Mathieu, R., Pouget, M., Cervelle, B., & Escadafal, R. (1998). Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment. Remote Sensing of Environment, 66(1), 17–28. https://doi.org/10.1016/S0034-4257(98)00030-3

    Article  Google Scholar 

  • Mauderly, J. L., Burnett, R. T., Castillejos, M., Özkaynak, H., Samet, J. M., Stieb, D. M., ..., & Wyzga, R. E. (2010). Is the air pollution health research community prepared to support a multipollutant air quality management framework?. Inhalation toxicology, 22(sup1), 1–19.

  • Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z

    Article  Google Scholar 

  • Mittal, V., Sasetty, S., Choudhary, R., & Agarwal, A. (2022). Deep-learning spatiotemporal prediction framework for particulate matter under dynamic monitoring. Transportation Research Record, 2676(8), 56–73.

    Article  Google Scholar 

  • Mitzia, A., Vítková, M., & Komárek, M. (2020). Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere, 242, 125248.

    Article  CAS  Google Scholar 

  • Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998.

    Article  Google Scholar 

  • Molla, A., Zuo, S., Zhang, W., Qiu, Y., Ren, Y., & Han, J. (2022). Optimal spatial sampling design for monitoring potentially toxic elements pollution on urban green space soil: A spatial simulated annealing and k-means integrated approach. Science of the Total Environment, 802, 149728.

    Article  CAS  Google Scholar 

  • Mustapha, A., & Aris, A. Z. (2012). Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Polish Journal of Environmental Studies, 21(5).

  • Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: A review. Journal of Environmental Quality, 26(3), 602–617.

    Article  CAS  Google Scholar 

  • Naidu, R., & Bolan, N. S. (2008). Contaminant chemistry in soils: key concepts and bioavailability. Developments in Soil Science, 32, 9–37.

  • Natarajan, S. (2023). Prediction of recently occurred soil erosion by integrating revised universal soil loss equation (RUSLE) with geo-spatial techniques-A case study on Pettimudi Hills, Kerala-India.

  • Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: the variogram and kriging (No. 11599). Springer International Publishing.

  • Pascal, S., David, S., Andraud, C., & Maury, O. (2021). Near-infrared dyes for two-photon absorption in the short-wavelength infrared: Strategies towards optical power limiting. Chemical Society Reviews, 50(11), 6613–6658.

    Article  CAS  Google Scholar 

  • Pasquel, D., Roux, S., Richetti, J., Cammarano, D., Tisseyre, B., & Taylor, J. A. (2022). A review of methods to evaluate crop model performance at multiple and changing spatial scales. Precision Agriculture, 23(4), 1489–1513.

    Article  Google Scholar 

  • Peng, Y., Kheir, R. B., Adhikari, K., Malinowski, R., Greve, M. B., Knadel, M., & Greve, M. H. (2016). Digital mapping of toxic metals in Qatari soils using remote sensing and ancillary data. Remote Sensing, 8(12), 1003. https://doi.org/10.3390/rs8121003

    Article  Google Scholar 

  • Pour, A. B., Hashim, M., & Hong, J. K. (2016). Application of multispectral satellite data for geological mapping in Antarctic environments. International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, 42. https://doi.org/10.1080/10106049.2018.1434684

  • Pouyat, R. V., Yesilonis, I. D., & Golubiewski, N. E. (2009). A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems, 12, 45–62.

    Article  Google Scholar 

  • Radočaj, D., Jurišić, M., & Gašparović, M. (2022). The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture. Remote Sensing, 14(3), 778.

    Article  Google Scholar 

  • Raheem, A. M., Naser, I. J., Ibrahim, M. O., & Omar, N. Q. (2023). Inverse distance weighted (IDW) and kriging approaches integrated with linear single and multi-regression models to assess particular physico-consolidation soil properties for Kirkuk city. Modeling Earth Systems and Environment, 9(4), 3999–4021.

  • Razas, M. A., Hassan, A., Khan, M. U., Emach, M. Z., & Saki, S. A. (2023). A critical comparison of interpolation techniques for digital terrain modelling in mining. Journal of the Southern African Institute of Mining and Metallurgy, 123(2), 53–62.

    Article  Google Scholar 

  • Reddy, G. O. (2018). Satellite remote sensing sensors: Principles and applications. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 21–43.

  • Ren, S., Song, C., Ye, S., Cheng, C., & Gao, P. (2022). The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Science of the Total Environment, 806, 150322.

    Article  CAS  Google Scholar 

  • Rey, M., Nikitin, A. V., Babikov, Y. L., & Tyuterev, V. G. (2016). TheoReTS–An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces. Journal of Molecular Spectroscopy, 327, 138–158.

    Article  CAS  Google Scholar 

  • Rowan, L., Hook, S., Abrams, M., & Mars, J. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98, 1019–1027. https://doi.org/10.2113/gsecongeo.98.5.1019

    Article  CAS  Google Scholar 

  • Saha, A., Gupta, B. S., Patidar, S., & Martínez-Villegas, N. (2022). Spatial distribution based on optimal interpolation techniques and assessment of contamination risk for toxic metals in the surface soil. Journal of South American Earth Sciences, 115, 103763.

    Article  CAS  Google Scholar 

  • Sankaran, S., & Ehsani, R. (2014). Introduction to the electromagnetic spectrum. Imaging with electromagnetic spectrum: Applications in food and agriculture (pp. 1–15). Springer, Berlin Heidelberg: Berlin, Heidelberg.

    Google Scholar 

  • Sawut, R., Kasim, N., Abliz, A., Hu, L., Yalkun, A., Maihemuti, B., & Qingdong, S. (2018). Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. International Journal of Applied Earth Observation and Geoinformation, 73, 14–25.

    Article  Google Scholar 

  • Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404, 124004.

    Article  CAS  Google Scholar 

  • Shokr, M. S., El Baroudy, A. A., Fullen, M. A., El-Beshbeshy, T. R., Ali, R. R., Elhalim, A., ..., & Jorge, M. C. (2016). Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt. Journal of Environmental Engineering and Landscape Management, 24(3), 218–231. https://doi.org/10.3846/16486897.2016.1184152

  • Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: A review. International Journal of Remote Sensing, 34(17), 6152–6181.

    Article  Google Scholar 

  • Shravanraj, K., Rejith, R. G., & Sundararajan, M. (2021). Evaluation of heavy metals in coastal aquifers and seawater: An appraisal of geochemistry using ICPMS and remote sensing. In Remote Sensing of Ocean and Coastal Environments (pp. 155–176). Elsevier.

  • Shukla, A. K., Shukla, S., Surampalli, R. Y., Zhang, T. C., Yu, Y. L., & Kao, C. M. (2023). Modeling microconstituents based on remote sensing and GIS techniques. Microconstituents in the Environment: Occurrence, Fate, Removal and Management, 227–246.

  • Sikakwe, G. U. (2023). Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review (p. 100988). Society and Environment.

    Google Scholar 

  • Singh, S. (2016). Remote sensing applications in soil survey and mapping: A review. International Journal of Geomatics and Geosciences, 7(2), 192–203.

    Google Scholar 

  • Singh, B. M., Singh, D., & Dhal, N. K. (2022). Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Studies in Chemical and Environmental Engineering, 5, 100176.

    Article  CAS  Google Scholar 

  • Singh, S. (2022). Forest fire emissions: A contribution to global climate change. Frontiers in Forests and Global Change, 5, 925480.

  • Singh, S., & KV, S. B. (2022). Role of hyperspectral imaging for precision agriculture monitoring. ADBU Journal of Engineering Technology, 11(1).

  • Song, P., Xu, D., Yue, J., Ma, Y., Dong, S., & Feng, J. (2022). Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of the Total Environment, 838, 156417.

    Article  CAS  Google Scholar 

  • Srinivasan, R., Lalitha, M., Chandrakala, M., Dharumarajan, S., & Hegde, R. (2022). Application of remote sensing and GIS techniques in assessment of salt affected soils for management in large scale soil survey. Soil Health and Environmental Sustainability: Application of Geospatial Technology (pp. 131–161). Springer International Publishing.

    Chapter  Google Scholar 

  • Suh, J., Lee, H., & Choi, Y. (2016). A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS. International Journal of Environmental Research and Public Health, 13(12), 1191.

    Article  Google Scholar 

  • Tao, H., Liao, X., Cao, H., Zhao, D., & Hou, Y. (2022). Three-dimensional delineation of soil pollutants at contaminated sites: Progress and prospects. Journal of Geographical Sciences, 32(8), 1615–1634.

    Article  Google Scholar 

  • Thakare, M., Sarma, H., Datar, S., Roy, A., Pawar, P., Gupta, K., ..., & Prasad, R. (2021). Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology, 3, 84–98.

  • Thompson, J. B., & Ferris, F. G. (1990). Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18(10), 995–998. https://doi.org/10.1130/0091-7613(1990)018%3c0995:CPOGCA%3e2.3.CO;2

    Article  CAS  Google Scholar 

  • Vilas, D. (2022). Spatiotemporal ecosystem dynamics on the west Florida shelf: Prediction, validation, and application to red tides and stock assessment (Doctoral dissertation, University of Florida).

  • Wang, J., Hu, X., Shi, T., He, L., Hu, W., & Wu, G. (2022). Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development. Geoderma, 405, 115399.

    Article  CAS  Google Scholar 

  • Wang, C., Wang, J., Zhou, S., Tang, J., Jia, Z., Ge, L., ..., & Wu, S. (2020). Polycyclic aromatic hydrocarbons and heavy metals in urban environments: Concentrations and joint risks in surface soils with diverse land uses. Land Degradation & Development, 31(3), 383–391.

  • Wei, L., Yuan, Z., Zhong, Y., Yang, L., Hu, X., & Zhang, Y. (2019). An improved gradient boosting regression tree estimation model for soil heavy metal (Arsenic) pollution monitoring using hyperspectral remote sensing. Applied Sciences, 9(9), 1943. https://doi.org/10.3390/app9091943

    Article  CAS  Google Scholar 

  • Wen, L., Zhang, L., Bai, J., Wang, Y., Wei, Z., & Liu, H. (2022). Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China. Chemosphere, 309, 136789.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011.

  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.

    Article  Google Scholar 

  • Yan, J., Chen, J., & Zhang, W. (2022). Impact of land use and cover on shallow groundwater quality in Songyuan city, China: A multivariate statistical analysis. Environmental Pollution, 307, 119532.

    Article  CAS  Google Scholar 

  • Yan, G., Mao, L., Liu, S., Mao, Y., Ye, H., Huang, T., ..., & Chen, L. (2018). Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Science of the Total Environment, 631, 942–950.

  • Yang, S., Taylor, D., Yang, D., He, M., Liu, X., & Xu, J. (2021). A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. Environmental Pollution, 287, 117611.

    Article  CAS  Google Scholar 

  • Zahedifar, M. (2023). Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 106807.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    Article  CAS  Google Scholar 

  • Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety, 159, 354–362.

    Article  CAS  Google Scholar 

  • Zhu, Y., Li, W., Wang, D., Wu, Z., & Shang, P. (2022). Spatial pattern of soil erosion in relation to land use change in a Rolling Hilly Region of Northeast China. Land, 11(8), 1253.

    Article  Google Scholar 

  • Žížala, D., Minařík, R., Skála, J., Beitlerová, H., Juřicová, A., Rojas, J. R., ..., & Zádorová, T. (2022). High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena, 212, 106024.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Swati Singh: Conceptualization, Writing – Original Draft, Writing – Review & Editing.

Corresponding author

Correspondence to Swati Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S. Mapping soil trace metal distribution using remote sensing and multivariate analysis. Environ Monit Assess 196, 516 (2024). https://doi.org/10.1007/s10661-024-12682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12682-3

Keywords

Navigation