Skip to main content
Log in

Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The widespread use of rare earth elements (REEs) across various industries makes them a new type of pollutant. Additionally, REEs are powerful indicators of geochemical processes. As one of the two main rivers in the Aral Sea, identifying the geochemical behavior of REEs in agricultural soils of the Syr Darya River is of great significance for subsequent indicative studies. In this study, the geochemical characteristics, influencing factors, and potential application significance of REEs in agricultural soils from three sampling areas along the Syr Darya River were analyzed using soil geography and elemental geochemical analyses. The results showed that the highest total concentration of REEs in the agricultural soil was in Area I, with a mean value of 142.49 μg/g, followed by Area III with a mean value of 124.56 μg/g, and the lowest concentration was in Area II with a mean value of 122.48 μg/g. The agricultural soils in the three regions were enriched in light rare earth elements (LREEs), with mean L/H values of 10.54, 10.13, and 10.24, respectively. The differentiation between light and heavy rare earth elements (HREEs) was also high. The concentration of REEs in agricultural soil along the Syr Darya River was primarily influenced by minerals such as monazite and zircon, rather than human activities (the pollution index of all REEs was less than 1.5). The relationship between Sm and Gd can differentiate soils impacted by agricultural activities from natural background soils. The results of this study can serve as a basis for indicative studies of REEs in Central Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References   

  • Babechuk, M. G., Widdowson, M., & Kamber, B. S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, 56–75. https://doi.org/10.1016/j.chemgeo.2013.10.027

    Article  CAS  Google Scholar 

  • Barros dos Santos, J. C., Le Pera, E., de Oliveira, C. S., de Souza Junior, V. S., Pedron, F., & d. A., Correa, M. M. & de Azevedo, A. C. (2019). Impact of weathering on REE distribution in soil-saprolite profiles developed on orthogneisses in Borborema Province, NE Brazil. Geoderma, 347, 103–117. https://doi.org/10.1016/j.geoderma.2019.03.040

    Article  CAS  Google Scholar 

  • Benabdelkader, A., Taleb, A., Probst, J. L., Belaidi, N., & Probst, A. (2019). Origin, distribution, and behaviour of rare earth elements in river bed sediments from a carbonate semi-arid basin (Tafna River, Algeria). Applied Geochemistry, 106, 96–111. https://doi.org/10.1016/j.apgeochem.2019.05.005

    Article  CAS  Google Scholar 

  • Burr, G. S., Kuzmin, Y. V., Krivonogov, S. K., Gusskov, S. A., & Cruz, R. J. (2019). A history of the modern Aral Sea (Central Asia) since the Late Pleistocene. Quaternary Science Reviews, 206, 141–149. https://doi.org/10.1016/j.quascirev.2019.01.006

    Article  Google Scholar 

  • Cao, X. D., Chen, Y., Wang, X. R., & Deng, X. H. (2001). Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere, 44(4), 655–661. https://doi.org/10.1016/s0045-6535(00)00492-6

    Article  CAS  Google Scholar 

  • Chang, C. Y., Li, F. B., Liu, C., Gao, J. F., Tong, H., & Chen, M. J. (2016a). Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica, 35(4), 329–339.

    Article  CAS  Google Scholar 

  • Chang, C. Y., Li, F. B., Liu, C. S., Gao, J. F., Tong, H., & Chen, M. J. (2016b). Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica, 35(4), 329–339. https://doi.org/10.1007/s11631-016-0119-1

    Article  CAS  Google Scholar 

  • Cheisson, T., & Schelter, E. J. (2019). Rare earth elements: Mendeleev’s bane, modern marvels. Science, 363(6426), 489–493. https://doi.org/10.1126/science.aau7628

    Article  CAS  Google Scholar 

  • Chen, H. B., Chen, Z. B., Chen, Z. Q., Ma, Q. Y. & Zhang, Q. Q. (2019). Rare earth elements in paddy fields from eroded granite hilly land in a southern China watershed. Plos One, 14(9). https://doi.org/10.1371/journal.pone.0222330

  • Dinali, G. S., Root, R. A., Amistadi, M. K., Chorover, J., Lopes, G., & Guimaraes Guilherme, L. R. (2019). Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environment International, 128, 279–291. https://doi.org/10.1016/j.envint.2019.04.022

    Article  CAS  Google Scholar 

  • Ding, Y. K., Li, Y. P. & Liu, Y. R. (2020). Spatial-temporal assessment of agricultural virtual water and uncertainty analysis: The case of Kazakhstan (2000–2016). Science of the Total Environment, 724. https://doi.org/10.1016/j.scitotenv.2020.138155

  • Fan, J., He, X., Du, W., Xiong, J., Song, G., Zhang, M., & Yang, J. (2021). Analyzing and comparing environmental baseline values of heavy metals in soil based on standardized method and statistical method. Journal of Huazhong Agricultural University, 40(1), 160–167.

    Google Scholar 

  • Ferrat, M., Weiss, D. J., Strekopytov, S., Dong, S., Chen, H., Najorka, J., Sun, Y., Gupta, S., Tada, R., & Sinha, R. (2011). Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochimica Et Cosmochimica Acta, 75(21), 6374–6399. https://doi.org/10.1016/j.gca.2011.08.025

    Article  CAS  Google Scholar 

  • Ferreira, M. d. S., Ferreira Fontes, M. P., Bellato, C. R., Marques Neto, J. d. O., Lima, H. N. & Fendorf, S. (2021). Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon. Environmental Pollution, 277. https://doi.org/10.1016/j.envpol.2021.116743

  • Galhardi, J. A., Leles, B. P., de Mello, J. W. V. & Wilkinson, K. J. (2020). Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. Science of the Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2019.134484

  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  CAS  Google Scholar 

  • Honda, M., Yabuki, S., & Shimizu, H. (2004). Geochemical and isotopic studies of aeolian sediments in China. Sedimentology, 51(2), 211–230. https://doi.org/10.1111/j.1365-3091.2004.00618.x

    Article  CAS  Google Scholar 

  • Huang, H. B., Lin, C. Q., Yu, R. L., Yan, Y., Hu, G. R., & Wang, Q. (2019). Spatial distribution and source appointment of rare earth elements in paddy soils of Jiulong River Basin, Southeast China. Journal of Geochemical Exploration, 200, 213–220. https://doi.org/10.1016/j.gexplo.2018.09.008

    Article  CAS  Google Scholar 

  • Inguaggiato, C., Burbano, V., Rouwet, D., & Garzon, G. (2017). Geochemical processes assessed by Rare Earth Elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia). Applied Geochemistry, 79, 65–74. https://doi.org/10.1016/j.apgeochem.2017.02.013

    Article  CAS  Google Scholar 

  • Inoue, K., Fukushi, M., Furukawa, A., Sahoo, S. K., Veerasamy, N., Ichimura, K., Kasahara, S., Ichihara, M., Tsukada, M., Torii, M., Mizoguchi, M., Taguchi, Y. & Nakazawa, S. (2020). Impact on gadolinium anomaly in river waters in Tokyo related to the increased number of MRI devices in use. Marine Pollution Bulletin). https://doi.org/10.1016/j.marpolbul.2020.111148

  • Jin, S. L., & Huang, Y. Z. (2014). A review on ecological toxicity of rare earth elements in soil. Asian Journal of Ecotoxicology, 9(2), 213–223.

    CAS  Google Scholar 

  • Kumar, M., Goswami, R., Awasthi, N. & Das, R. (2019). Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124477

  • Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1–2), 1–12. https://doi.org/10.1016/j.geoderma.2009.10.002

    Article  CAS  Google Scholar 

  • Laveuf, C., Cornu, S., Guilherme, L. R. G., Guerin, A., & Juillot, F. (2012). The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma, 170, 25–38. https://doi.org/10.1016/j.geoderma.2011.10.014

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, Q., Gou, X., Wang, R. Y., & Xiao, G. J. (2011). Heavy metal contamination and its sources in rainfed agricultural and irrigated agricultural soils from central Gansu province. Journal of Lanzhou University. Natural Science, 47(6), 56–61.

    CAS  Google Scholar 

  • Li, Y., Song, Y. G., Fitzsimmons, K. E., Chen, X. L., Prud'homme, C. & Zong, X. L. (2020). Origin of loess deposits in the North Tian Shan piedmont, Central Asia. Palaeogeography Palaeoclimatology Palaeoecology, 559. https://doi.org/10.1016/j.palaeo.2020.109972

  • Li, Z. L., Chen, Q. J., Dong, S. P., Zhang, D. Z., Yu, X. H. & Zhang, C. (2021). Applicability of rare earth elements in eolian sands from desert as proxies for provenance: A case study in the Badain Jaran Desert, Northwestern China. Catena, 207. https://doi.org/10.1016/j.catena.2021.105647

  • Li, W. S., Zuo, Y. P., Wang, L. Q., Wan, X. M., Yang, J., Liang, T., Song, H., Weihrauch, C. & Rinklebe, J. (2022). Abundance, spatial variation, and sources of rare earth elements in soils around ion-adsorbed rare earth mining areas. Environmental Pollution, 313. https://doi.org/10.1016/j.envpol.2022.120099

  • Lian, Z. M., Han, Y. X., Zhao, X. M., Xue, Y. L. & Gu, X. (2022). Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136062

  • Lin, Z. L., Wei, G. L., Zhang, J. L., Liang, X. L. & Huang, G. Q. (2022). Origin and distribution of rare earth elements (REEs) in the soils of Meizhou City, southern China with high abundance of regolith-hosted REEs. Applied Geochemistry, 147. https://doi.org/10.1016/j.apgeochem.2022.105514

  • Liu, Y. X., Zhao, W. J., Yu, X., Qi, M. X., & Sun, C. Y. (2017). The space distribution characteristics study of rare earth elements in the surface soil of urban areas in Beijing. Ecology and Environmental Sciences, 26(10), 1736–1746.

    Google Scholar 

  • Liu, Y. X., Wu, Q. X., Jia, H. P., Wang, Z. H., Gao, S. L., & Zeng, J. (2022c). Anthropogenic rare earth elements in urban lakes: Their spatial distributions and tracing application. Chemosphere, 300, 134534.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Guo, H. M., Pourret, O., Wang, Z., Sun, Z. X., Zhang, W. M. & Liu, M. H. (2021). Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process. Applied Geochemistry, 134. https://doi.org/10.1016/j.apgeochem.2021.105089

  • Liu, W., Ma, L., Smanov, Z., Samarkhanov, K. & Abuduwaili, J. (2022a). Clarifying soil texture and salinity using local spatial statistics (Getis-Ord Gi* and Moran's I) in Kazakh-Uzbekistan Border Area, Central Asia. Agronomy-Basel, 12(2). https://doi.org/10.3390/agronomy12020332

  • Liu, W. J., Li, Y. C., Wang, X., Cui, L. F., Zhao, Z., Liu, C. Q. & Xu, Z. F. (2022b). Weathering stage and topographic control on rare earth element (REE) behavior: New constraints from a deeply weathered granite hill. Chemical Geology, 610. https://doi.org/10.1016/j.chemgeo.2022.121066

  • Lyu, Y., Huang, Y., Bao, A. M., Zhong, R. S. & Yang, H. (2021). Temporal/spatial variation of terrestrial water storage and groundwater storage in typical inland river basins of central asia. Water, 13(23). https://doi.org/10.3390/w13233385

  • Ma, L., Abuduwaili, J., Smanov, Z., Ge, Y., Samarkhanov, K., Saparov, G. & Issanova, G. (2019). Spatial and vertical variations and heavy metal enrichments in irrigated soils of the Syr Darya River Watershed, Aral Sea Basin, Kazakhstan. International Journal of Environmental Research and Public Health, 16(22). https://doi.org/10.3390/ijerph16224398

  • Masuda, A., Nakamura, N., & Tanaka, T. (1973). Fine structures of mutually normalized rare-earth patterns of chondrites. Geochimica Et Cosmochimica Acta, 37(2), 239–248. https://doi.org/10.1016/0016-7037(73)90131-2

    Article  CAS  Google Scholar 

  • McLennan, S. M. (1993). Weathering and global denudation. Journal of Geology, 101(2), 295–303. https://doi.org/10.1086/648222

    Article  Google Scholar 

  • Medeiros Cunha, C. S., Bezerra, A., da Silva, Y. J., Ortiz Escobar, M. E., & Araujo do Nascime, C. W. (2018). Spatial variability and geochemistry of rare earth elements in soils from the largest uranium-phosphate deposit of Brazil. Environmental Geochemistry and Health, 40(4), 1629–1643. https://doi.org/10.1007/s10653-018-0077-0

    Article  CAS  Google Scholar 

  • Naccarato, A., Tassone, A., Cavaliere, F., Elliani, R., Pirrone, N., Sprovieri, F., Tagarelli, A. & Giglio, A. (2020). Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Science of the Total Environment, 749. https://doi.org/10.1016/j.scitotenv.2020.141438

  • Nesbitt, H. W. (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279(5710), 206–210. https://doi.org/10.1038/279206a0

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0

    Article  CAS  Google Scholar 

  • Newman, B. K., & Watling, R. J. (2007). Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa. Water Sa, 33(5), 675–691.

    CAS  Google Scholar 

  • Ou, X. l., Chen, Z. B., Chen, X. L., Li, X. F., Wang, J., Ren, T. J., Chen, H. B., Feng, L. J., Wang, Y. K., Chen, Z. Q., Liang, M. X. & Gao, P. C. (2022). Redistribution and chemical speciation of rare earth elements in an ion- adsorption rare earth tailing, Southern China. Science of the Total Environment, 821. https://doi.org/10.1016/j.scitotenv.2022.153369

  • Paes Landim, J. S., Bezerra, A., da Silva, Y. J., & Araujo do Nascimento, C. W., Agra Bezerra da Silva, Y. J., Nascimento, R. C., Boechat, C. L., Atanazio Cru Silva, C. M. C., de Olinda, R. A., Barbosa, R. S., Silva, T. d. S., Biondi, C. M. & Collins, A. L. (2022). Distribution of rare earth elements in soils of contrasting geological and pedological settings to support human health assessment and environmental policies. Environmental Geochemistry and Health, 44(3), 861–872. https://doi.org/10.1007/s10653-021-00993-0

    Article  CAS  Google Scholar 

  • Pugliese Andrade, G. R., Cuadros, J., Peniche Barbosa, J. M. & Vidal-Torrado, P. (2022). Clay minerals control rare earth elements (REE) fractionation in Brazilian mangrove soils. Catena, 209. https://doi.org/10.1016/j.catena.2021.105855

  • Qadir, M., Noble, A. D., Qureshi, A. S., Gupta, R. K., Yuldashev, T., & Karimov, A. (2009). Salt-induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia. Natural Resources Forum, 33(2), 134–149. https://doi.org/10.1111/j.1477-8947.2009.01217.x

    Article  Google Scholar 

  • Ramos, S. J., Dinali, G. S., de Carvalho, T. S., Chaves, L. C., Siqueira, J. O., & Guilherme, L. R. G. (2016a). Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. Journal of Geochemical Exploration, 168, 177–186. https://doi.org/10.1016/j.gexplo.2016.06.009

    Article  CAS  Google Scholar 

  • Ramos, S. J., Dinali, G. S., Oliveira, C., Martins, G. C., Moreira, C. G., Siqueira, J. O., & Guilherme, L. R. G. (2016b). Rare earth elements in the soil environment. Current Pollution Reports, 2(1), 28–50. https://doi.org/10.1007/s40726-016-0026-4

    Article  CAS  Google Scholar 

  • Rigol, A., Tudela, S., Vidal, M., & Ramírez-Guinart, O. (2019). Testing biochar as sorbent to decrease samarium mobility in contaminated areas. Eng. Conf. Int.

    Google Scholar 

  • Rogowska, J., Olkowska, E., Ratajczyk, W., & Wolska, L. (2018). Gadolinium as a new emerging contaminant of aquatic environments. Environmental Toxicology and Chemistry, 37(6), 1523–1534. https://doi.org/10.1002/etc.4116

    Article  CAS  Google Scholar 

  • Roy, P. D., & Smykatz-Kloss, W. (2007). REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Chemie Der Erde-Geochemistry, 67(1), 55–68. https://doi.org/10.1016/j.chemer.2005.01.006

    Article  CAS  Google Scholar 

  • Rzymski, P., Klimaszyk, P., Niedzielski, P., Marszelewski, W., Borowiak, D., Nowinski, K., Baikenzheyeva, A., Kurmanbayev, R., & Aladin, N. (2019). Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere, 234, 81–88. https://doi.org/10.1016/j.chemosphere.2019.06.036

    Article  CAS  Google Scholar 

  • Shen, H., Abuduwaili, J., Samat, A. & Ma, L. (2016). A review on the research of modern aeolian dust in Central Asia. Arabian Journal of Geosciences, 9(13). https://doi.org/10.1007/s12517-016-2646-9

  • Song, H., Shin, W. J., Ryu, J. S., Shin, H. S., Chung, H., & Lee, K. S. (2017). Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere, 172, 155–165. https://doi.org/10.1016/j.chemosphere.2016.12.135

    Article  CAS  Google Scholar 

  • Sposito, G. (1989). The Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Squadrone, S., Brizio, P., Stella, C., Mantia, M., Battuello, M., Nurra, N., Sartor, R. M., Orusa, R., Robetto, S., Brusa, F., Mogliotti, P., Garrone, A., & Abete, M. C. (2019). Rare earth elements in marine and terrestrial matrices of Northwestern Italy: Implications for food safety and human health. Science of the Total Environment, 660, 1383–1391. https://doi.org/10.1016/j.scitotenv.2019.01.112

    Article  CAS  Google Scholar 

  • Suska-Malawska, M., Sulwinski, M., Wilk, M., Otarov, A. & Metrak, M. (2019). Potential eolian dust contribution to accumulation of selected heavy metals and rare earth elements in the aboveground biomass of Tamarix spp. from saline soils in Kazakhstan. Environmental Monitoring and Assessment, 191(2). https://doi.org/10.1007/s10661-018-7179-0

  • Tan, Q. Y., Li, J. H., & Zeng, X. L. (2015). Rare earth elements recovery from waste fluorescent lamps: A review. Critical Reviews in Environmental Science and Technology, 45(7), 749–776. https://doi.org/10.1080/10643389.2014.900240

    Article  CAS  Google Scholar 

  • Temga, J. P., Sababa, E., Mamdem, L. E., Bijeck, M. L. N., Azinwi, P. T., Tehna, N., Zame, P. Z. o., Onana, V. L., Nguetnkam, J. P., Bitom, L. D. & Ndjigui, P.-D. (2021). Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Regional, 25. https://doi.org/10.1016/j.geodrs.2021.e00369

  • Veerasamy, N., Sahoo, S. K., Inoue, K., Arae, H., & Fukushi, M. (2020). Geochemical behavior of uranium and thorium in sand and sandy soil samples from a natural high background radiation area of the Odisha coast. India. Environmental Science and Pollution Research, 27(25), 31339–31349. https://doi.org/10.1007/s11356-020-09370-3

    Article  CAS  Google Scholar 

  • Vukojevic, V., Durdic, S., Stefanovic, V., Trifkovic, J., Cakmak, D., Perovic, V. & Mutic, J. (2019). Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer. Environmental Science and Pollution Research, 26(6), 5422–5434. https://doi.org/10.1007/s11356-018-3982-y

  • Wang, H., Luo, G. P., Wang, W. S., Pachikin, K., Li, Y. M., Zheng, H. W., & Hu, W. J. (2019). Inversion of soil moisture content in the farmland in middle and lower reaches of Syr Darya River Basin based on multi-source remotely sensed data. Journal of Natural Resources, 34(12), 2717–2731.

    Article  Google Scholar 

  • Wang, L. Q. & Liang, T. (2015). Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Scientific Reports, 5. https://doi.org/10.1038/srep12483

  • Wang, Y. Y., Wang, G. F., Sun, M. Q., Liang, X. L., He, H. P., Zhu, J. X. & Takahashi, Y. S. (2022). Environmental risk assessment of the potential “Chemical Time Bomb” of ion-adsorption type rare earth elements in urban areas. Science of the Total Environment, 822. https://doi.org/10.1016/j.scitotenv.2022.153305

  • Wei, W., Ling, S. X., Wu, X. Y., Li, X. N. & Liao, X. (2021). Investigations on mineralogy and geochemistry of a black shale profile on the northern Yangtze platform, China: Weathering fate of rare earth elements and yttrium (REY) and its implications. Applied Geochemistry, 126. https://doi.org/10.1016/j.apgeochem.2021.104897

  • Weng, W. J., Biesiekierski, A., Li, Y. C., Dargusch, M., & Wen, C. (2021). A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomaterialia, 130, 80–97. https://doi.org/10.1016/j.actbio.2021.06.004

    Article  CAS  Google Scholar 

  • Wiche, O., Zertani, V., Hentschel, W., Achtziger, R., & Midula, P. (2017). Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). Journal of Geochemical Exploration, 175, 120–129. https://doi.org/10.1016/j.gexplo.2017.01.008

    Article  CAS  Google Scholar 

  • Xian, H., Dong, X., Wang, Y., Li, Y., Xing, J. & Jeppesen, E. (2022). Geochemical baseline establishment and pollution assessment of heavy metals in the largest coastal lagoon (Pinging Lagoon) in China mainland. Marine Pollution Bulletin, 177. https://doi.org/10.1016/j.marpolbul.2022.113459

  • Xie, Y. Y., Meng, J., & Guo, L. F. (2014). REE geochemistry of modern eolian dust deposits in Harbin city, Heilongjiang province, China: Implications for provenance. CATENA, 123, 70–78. https://doi.org/10.1016/j.catena.2014.07.008

    Article  CAS  Google Scholar 

  • Yuan, Y. Y., Liu, S. L., Wu, M., Zhong, M. Y., Shahid, M. Z. & Liu, Y. L. (2021). Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: A case study in Sichuan Basin, China. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148404

  • Zerizghi, T., Guo, Q., Wei, R., Wang, Z., Du, C. & Deng, Y. (2023). Rare earth elements in soil around coal mining and utilization: Contamination, characteristics, and effect of soil physicochemical properties. Environmental Pollution, 331. https://doi.org/10.1016/j.envpol.2023.121788

  • Zhang, Q. H., Tong, L. G., Cheng, L., Zhu, J., & Wang, Q. (2012). Characteristics of REE distribution in the surface soil of the farmland in wastewater irrigation area. Acta Agriculturae Universitatis Jiangxiensis, 34(3), 614–618.

    CAS  Google Scholar 

  • Zhang, H., Yu, M., Xu, H. J., Wen, H., Fan, H. Y., Wang, T. Y., & Liu, J. G. (2020). Geochemical baseline determination and contamination of heavy metals in the urban topsoil of Fuxin City. China. Journal of Arid Land, 12(6), 1001–1017. https://doi.org/10.1007/s40333-020-0029-2

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Su, B. W., Shao, S. S., Li, N., Jiao, H., Dan, Y., Zhang, H. & Gao, C. (2023). Geochemical behavior and source analysis of rare earth elements in intensive agriculture soils through high-resolution sampling. Science of the Total Environment, 905. https://doi.org/10.1016/j.scitotenv.2023.167777

  • Zhu, M. Y., Tan, S. D., Liu, W. Z., & Zhang, Q. F. (2010). A review of REE tracer method used in soil erosion studies. Agricultural Sciences in China, 9(8), 1167–1174. https://doi.org/10.1016/s1671-2927(09)60204-2

    Article  CAS  Google Scholar 

  • El Zrelli, R., Baliteau, J. Y., Yacoubi, L., Castet, S., Gregoire, M., Fabre, S., Sarazin, V., Daconceicao, L., Courjault-Rade, P. & Rabaoui, L. (2021). Rare earth elements characterization associated to the phosphate fertilizer plants of Gabes (Tunisia, Central Mediterranean Sea): Geochemical properties and behavior, related economic losses, and potential hazards. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148268

Download references

Funding

This research was funded by the Tianshan Talent Training Program (2023TSYCCX0083), the National Natural Science Foundation of China (42171014), and the High-Level Training Project of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (E050030101).

Author information

Authors and Affiliations

Authors

Contributions

Yizhen Li: writing—original draft; conceptualization; methodology; formal analysis; writing—review and editing. Galymzhan Saparov: validation, investigation. Tao Zeng: validation, investigation. Jilili Abuduwaili: writing—review and editing; conceptualization; project administration; funding acquisition. Long Ma: writing—review and editing; conceptualization; formal analysis.

Corresponding author

Correspondence to Long Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

No ethical approval was necessary for this study.

Consent to participate

All participants in this study consent to participation.

Consent for publication

All authors consent to this publication.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 999 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Saparov, G., Zeng, T. et al. Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin. Environ Monit Assess 196, 493 (2024). https://doi.org/10.1007/s10661-024-12647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12647-6

Keywords

Navigation