Skip to main content
Log in

Investigation of organic micropollutant pollution in İzmit Bay: a comparative study of passive sampling and instantaneous sampling techniques

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we used a comprehensive array of sampling techniques to examine the pollution caused by organic micropollutants in İzmit Bay for the first time. Our methodology contains spot seawater sampling, semi-permeable membrane devices (SPMDs) passive samplers for time-weighted average (TWA), and sediment sampling for long-term pollution detection in İzmit Bay, together. Additionally, the analysis results obtained with these three sampling methods were compared in this study. Over the course of two seasons in 2020 and 2021, we deployed SPMDs for 21 days in the first season and for 30 days in the second season. This innovative approach allowed us to gather sea water samples and analyze them for the presence of polycyclic aromatic hydrocarbons (Σ15 PAHs), polychlorinated biphenyls (Σ7 PCBs), and organochlorine pesticides (Σ11 OCPs). Using SPMD-based passive sampling, we measured micropollutant concentrations: PAHs ranged from 1963 to 10342 pg/L in 2020 and 1338 to 6373 pg/L in 2021; PCBs from 17.46 to 61.90 pg/L in 2020 and 8.37 to 78.10 pg/L in 2021; and OCPs from 269.2 to 8868 pg/L in 2020 and 141.7 to 1662 pg/L in 2021. Our findings revealed parallels between the concentrations of PAHs, PCBs, and OCPs in both SPMDs and sediment samples, providing insights into the distribution patterns of these pollutants in the marine ecosystem. However, it is worth noting that due to limited data acquisition, the suitability of spot sampling in comparison to instantaneous sampling remains inconclusive, highlighting the need for further investigation and data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Adeyemi, D., Anyakora, C., Ukpo, G. E., Adedayo, A., & Darko, G. (2011). Evaluation of the levels of organochlorine pesticide residues in water samples of Lagos Lagoon using solid phase extraction method

  • Allan, I., Nyberg, E., Næs, K., Hoydal, K., & Larsen, M. (2009). Evaluation of passive samplers for the monitoring of contaminants in sediment and water.https://doi.org/10.6027/tn2009-563

  • Allan, I. J., Knutsson, J., Guigues, N., Mills, G. A., Fouillac, A.-M., & Greenwood, R. (2008). Chemcatcher® and DGT passive sampling devices for regulatory monitoring of trace metals in surface water. Journal of Environmental Monitoring, 10(7), 821–829. https://doi.org/10.1039/B802581A

    Article  CAS  Google Scholar 

  • Alvarez, D. A. (2010a). Estimated water concentration calculator from SPMD data using multiple PRCs, version 5.1. Microsoft Excel Spreadsheet

  • Alvarez, D. A. (2010b). Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. US Geological Survey, Techniques and Methods, 1, 28.

    Google Scholar 

  • Alvarez, D. A. (2014). Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical ıntegrative sampler (POCIS) in environmental monitoring studies

  • Alvarez, D. A., Petty, J. D., Huckins, J. N., Jones-Lepp, T. L., Getting, D. T., Goddard, J. P., & Manahan, S. E. (2004). Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxicology and Chemistry, 23(7), 1640–1648. https://doi.org/10.1897/03-603

    Article  CAS  Google Scholar 

  • ATSDR, A. (1995). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta: US Department of Health and Human Services, Public health service.

  • Balcioğlu, E. B., Gönülal, O., Güreşen, S. O., Aksu, A., & Öztürk, B. (2018). Comparison and origins of polycyclic aromatic hydrocarbons (PAHs) in the entrance and the exit of the Turkish Straits System (TSS). Marine Pollution Bulletin, 136, 33–37.

    Article  Google Scholar 

  • Basheer, C., Obbard, J. P., & Lee, H. K. (2003). Persistent organic pollutants in Singapore’s coastal marine environment: Part I, seawater. Water, Air, and Soil Pollution, 149, 295–313.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47(1), 77–90.

    Article  CAS  Google Scholar 

  • Baussant, T., Sanni, S., Jonsson, G., Skadsheim, A., & Børseth, J. F. (2001). Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environmental Toxicology and Chemistry, 20(6), 1175–1184.

    Article  CAS  Google Scholar 

  • Besiktepe, S. T., Sur, H. I., Ozsoy, E., Latif, M. A., Oguz, T., & Unluata, U. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanography, 34(4), 285–334.

    Article  Google Scholar 

  • Beyer, A., & Biziuk, M. (2009). Environmental fate and global distribution of polychlorinated biphenyls. Reviews of Environmental Contamination and Toxicology, 201, 137–158.

    CAS  Google Scholar 

  • Booij, K., Smedes, F., & Van Weerlee, E. M. (2002). Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46(8), 1157–1161.

    Article  CAS  Google Scholar 

  • Booij, K., & van Drooge, B. L. (2001). Polychlorinated biphenyls and hexachlorobenzene in atmosphere, sea-surface microlayer, and water measured with semi-permeable membrane devices (SPMDs). Chemosphere, 44(2), 91–98.

    Article  CAS  Google Scholar 

  • BSI. (2011). BS EN ISO 5667 - Water quality. Sampling Part 23 Water quality. Sampling. Guidance on passive sampling in surface waters. In BSI Standards Publication (Vol. Atlanta, GA)

  • Çakiroğullari, G. Ç., & Secer, S. (2011). Spatial and seasonal distribution of organochlorine contaminants in surface water and sediment from the İzmit Bay, Turkey. Journal of Natural & Applied Sciences, 15(1)

  • Crunkilton, R. L., & DeVita, W. M. (1997). Determination of aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) in an urban stream. Chemosphere, 35(7), 1447–1463. https://doi.org/10.1016/S0045-6535(97)00217-8

    Article  CAS  Google Scholar 

  • Dachs, J., Bayona, J. M., Raoux, C., & Albaigés, J. (1997). Spatial, vertical distribution and budget of polycyclic aromatic hydrocarbons in the western Mediterranean seawater. Environmental Science & Technology, 31(3), 682–688.

    Article  CAS  Google Scholar 

  • DeVita, W. M. (1994). Use of semipermeable polymeric membrane devices to monitor organic contaminants in Lincoln Creek, Milwaukee, Wisconsin [Master of Science, University of Wisconsin]. Wisconsin

  • Ellis, S. G., Booij, K., & Kaputa, M. (2008). Comparison of semipermeable membrane device (SPMD) and largevolume solid-phase extraction techniques to measure water concentrations of 4, 4′-DDT, 4, 4′-DDE, and 4, 4′-DDDin Lake Chelan, Washington. Chemosphere, 72(8), 1112–1117.

    Article  CAS  Google Scholar 

  • Eyuboglu, H., & EyÜBoĞLu, Ö. (2020). İzmit Körfezi’ nde Kirletici Kaynakların Dağılımı ve Deniz Ekosistemine Etkisi. Journal of Anatolian Environmental and Animal Sciences, 5(1), 25–37. https://doi.org/10.35229/jaes.649669

    Article  Google Scholar 

  • Fedorova, G., Randak, T., Golovko, O., Kodes, V., Grabicova, K., & Grabic, R. (2014). A passive sampling method for detecting analgesics, psycholeptics, antidepressants and illicit drugs in aquatic environments in the Czech Republic. Science of the Total Environment, 487, 681–687. https://doi.org/10.1016/j.scitotenv.2013.12.091

    Article  CAS  Google Scholar 

  • Gago-Ferrero, P., Gros, M., Ahrens, L., & Wiberg, K. (2017). Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters. Science of the Total Environment, 601, 1289–1297.

    Article  Google Scholar 

  • Gedik, K., Demircioğlu, F., & İmamoğlu, İ. (2010). Spatial distribution and source apportionment of PCBs in sediments around İzmit industrial complexes, Turkey. Chemosphere, 81(8), 992–999.

    Article  CAS  Google Scholar 

  • Goodbred, S. L., Bryant, W. L., Rosen, M. R., Alvarez, D., & Spencer, T. (2009). How useful are the “other” semipermeable membrane devices (SPMDs); the mini-unit (15.2 cm long)? Science of the Total environment, 407(13), 4149–4156.

    Article  CAS  Google Scholar 

  • Górecki, T., & Namieśnik, J. (2002). Passive sampling. TrAC Trends in Analytical Chemistry, 21(4), 276–291. https://doi.org/10.1016/S0165-9936(02)00407-7

    Article  Google Scholar 

  • Granmo, Å., Ekelund, R., Berggren, M., Brorström-Lundén, E., & Bergqvist, P.-A. (2000). Temporal trend of organochlorine marine pollution indicated by concentrations in mussels, semipermeable membrane devices, and sediment. Environmental Science & Technology, 34(16), 3323–3329.

    Article  CAS  Google Scholar 

  • Greenwood, R., Mills, G., & Vrana, B. (2007). Passive sampling techniques in environmental monitoring. Elsevier.

    Google Scholar 

  • Gupta, P., Thompson, B. L., Wahlang, B., Jordan, C. T., Zach Hilt, J., Hennig, B., & Dziubla, T. (2018). The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: A potential target for antioxidant nanotherapeutics. Drug Delivery and Translational Research, 8(3), 740–759. https://doi.org/10.1007/s13346-017-0429-9

    Article  CAS  Google Scholar 

  • Gustavson, K. E., & Harkin, J. M. (2000). Comparison of sampling techniques and evaluation of semipermeable membrane devices (SPMDs) for monitoring polynuclear aromatic hydrocarbons (PAHs) in groundwater. Environmental Science & Technology, 34(20), 4445–4451.

    Article  CAS  Google Scholar 

  • Harman, C., Tollefsen, K.-E., Bøyum, O., Thomas, K., & Grung, M. (2008). Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). Chemosphere, 72(10), 1510–1516.

    Article  CAS  Google Scholar 

  • Harner, T., & Bidleman, T. F. (1998). Octanol− air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology, 32(10), 1494–1502.

    Article  CAS  Google Scholar 

  • Hernando, M., Martínez-Bueno, M., & Fernández-Alba, A. (2005). Seawater quality control of microcontaminants in fish farm cage systems: Application of passive sampling devices. Boletín-Instituto Español De Oceanografía, 21(1/4), 37.

    Google Scholar 

  • Huckins, J. N., Petty, J. D., & Booij, K. (2006). Monitors of organic chemicals in the environment: Semipermeable membrane devices (Vol. 223). Springer

  • Huckins, J. N., Petty, J. D., Lebo, J. A., Almeida, F. V., Booij, K., Alvarez, D. A., Cranor, W. L., Clark, R. C., & Mogensen, B. B. (2002). Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environmental Science & Technology, 36(1), 85–91.

    Article  CAS  Google Scholar 

  • Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20(5), 533–552.

    Article  CAS  Google Scholar 

  • Ibigbami, O., Aiyesanmi, A., Adeyeye, E., & Adebayo, A. (2015a). Persistent organochlorine pesticide residues in water, sediments and fish samples from Ogbese River. Environment and Natural Resources Research, 5. https://doi.org/10.5539/enrr.v5n3p28

  • Ibigbami, O., Aiyesanmi, A., Adeyeye, E., Adebayo, A., & Aladesanwa, R. (2015b). Assessment of organochlorine and organophosphorus pesticide residue in water and sediments from Ero river in southwestern Nigeria. Journal of Chemical, Biological and Physical Sciences, 5(4), 4679–4690.

  • İbrahim, T. (2021). Marmara denizi körfezlerinin baskı–etki durumu ve ötrofikasyon açısından değerlendirilmesi. Aquatic Research, 4(2), 169–180.

    Google Scholar 

  • Joyce, A. S., & Burgess, R. M. (2018). Using performance reference compounds to compare mass transfer calibration methodologies in passive samplers deployed in the water column. Environmental Toxicology and Chemistry, 37(8), 2089–2097.

    Article  CAS  Google Scholar 

  • Karacık, B., Okay, O., Henkelmann, B., Pfister, G., & Schramm, K.-W. (2013). Water concentrations of PAH, PCB and OCP by using semipermeable membrane devices and sediments. Marine Pollution Bulletin, 70(1–2), 258–265.

    Article  Google Scholar 

  • Karademir, A., Aslankılavuz, S., Telli, B., & Ergül, H. (2016). Evaluation of PCDD/F pollution in the mussel (Mytilus galloprovincialis) tissue in Izmit Bay

  • Karademir, A., Ergül, H. A., Telli, B., Kılavuz, S. A., & Terzi, M. (2013). Evaluation of PCDD/F pollution in surface sediments of Izmit Bay. Environmental Science and Pollution Research International, 20(9), 6611–6619. https://doi.org/10.1007/s11356-013-1713-y

    Article  CAS  Google Scholar 

  • Khudur, L. (2019). The effect of lead as co-contaminant with petrogenic hydrocarbons on soil bioremediation, ecotoxicity and diversity of the microbial community RMIT University]

  • Kingston, J. K., Greenwood, R., Mills, G. A., Morrison, G. M., & Persson, L. B. (2000). Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. Journal of Environmental Monitoring, 2(5), 487–495. https://doi.org/10.1039/b003532g

    Article  CAS  Google Scholar 

  • Kot-Wasik, A., Zabiegała, B., Urbanowicz, M., Dominiak, E., Wasik, A., & Namieśnik, J. (2007). Advances in passive sampling in environmental studies. Analytica Chimica Acta, 602(2), 141–163. https://doi.org/10.1016/j.aca.2007.09.013

    Article  CAS  Google Scholar 

  • Lebo, J., Almeida, F., Cranor, W., Petty, J., Huckins, J., Rastall, A., Alvarez, D., Mogensen, B., & Johnson, B. T. (2004). Purification of triolein for use in semipermeable membrane devices (SPMDs). Chemosphere, 54(8), 1217–1224.

    Article  CAS  Google Scholar 

  • Liu, G., Zhang, G., Li, J., Li, X., Peng, X., & Qi, S. (2006). Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China. Atmospheric Environment, 40(17), 3134–3143.

    Article  CAS  Google Scholar 

  • Lo, H.-S., Wong, C.-Y., Tam, N.F.-Y., & Cheung, S.-G. (2019). Spatial distribution and source identification of hydrophobic organic compounds (HOCs) on sedimentary microplastic in Hong Kong. Chemosphere, 219, 418–426. https://doi.org/10.1016/j.chemosphere.2018.12.032

    Article  CAS  Google Scholar 

  • Long, E., & MacDonald, D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4(5), 1019–1039.

    Article  Google Scholar 

  • Lu, Y., Wang, Z., & Huckins, J. (2002). Review of the background and application of triolein-containing semipermeable membrane devices in aquatic environmental study. Aquatic Toxicology, 60(1), 139–153. https://doi.org/10.1016/S0166-445X(02)00056-5

    Article  CAS  Google Scholar 

  • Macagnano, A., Papa, P., Avossa, J., Perri, V., Marelli, M., Sprovieri, F., Zampetti, E., De Cesare, F., Bearzotti, A., & Pirrone, N. (2018). Passive sampling of gaseous elemental mercury based on a composite TiO2NP/AuNP layer. Nanomaterials (Basel), 8(10). https://doi.org/10.3390/nano8100798

  • Marrucci, A., Marras, B., Campisi, S. S., & Schintu, M. (2013). Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean). Marine Pollution Bulletin, 75(1–2), 69–75.

    Article  CAS  Google Scholar 

  • Morkoç, E., Okay, O. S., Tolun, L., Tüfekçi, V., Tüfekçi, H., & Legoviç, T. (2001). Towards a clean Izmit Bay. Environment International, 26(3), 157–161.

    Article  Google Scholar 

  • Munaron, D., Tapie, N., Budzinski, H., Andral, B., & Gonzalez, J.-L. (2012). Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers. Estuarine, Coastal and Shelf Science, 114, 82–92. https://doi.org/10.1016/j.ecss.2011.09.009

    Article  CAS  Google Scholar 

  • Nitti, F., Kapitan, O. B., Ola, P. D., & Siswanta, D. (2022). Passive sampling techniques for monitoring of pharmaceuticals and personal care products in water matrix: Trends from 2016 to 2020. In M. Kumar & S. Mohapatra (Eds.), Impact of COVID-19 on Emerging Contaminants: One Health Framework for Risk Assessment and Remediation (pp. 17–44). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1847-6_2

  • Oğuz, T., & Sur, H. (1986). A numerical modelling study of circulation in the Bay of Izmit: Final report. TÜBİTAK-MRC, Chemistry Department Publication, Kocaeli, Turkey(187), 97

  • Olatunji, O. S. (2019). Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Scientific Reports, 9(1), 538.

    Article  Google Scholar 

  • Parrott, J. L., Backus, S. M., Borgmann, A. I., & Swyripa, M. (1999). The use of semipermeable membrane devices to concentrate chemicals in oil refinery effluent on the Mackenzie River. Arctic, 125–138

  • Petty, J., Orazio, C., Huckins, J., Gale, R., Lebo, J., Meadows, J., Echols, K., & Cranor, W. (2000). Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. Journal of Chromatography A, 879(1), 83–95.

    Article  CAS  Google Scholar 

  • Peven, C. S., Uhler, A. D., & Querzoli, F. J. (1996). Caged mussels and semipermeable membrane devices as indicators of organic contaminant uptake in Dorchester and Duxbury Bays, Massachusetts. Environmental Toxicology and Chemistry: An International Journal, 15(2), 144–149.

    Article  CAS  Google Scholar 

  • Pogorzelec, M., & Piekarska, K. (2018). Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment. Science of the Total Environment, 631–632, 1431–1439. https://doi.org/10.1016/j.scitotenv.2018.03.105

    Article  CAS  Google Scholar 

  • Prest, H. F., Huckins, J. N., Petty, J. D., Herve, S., Paasivirta, J., & Heinonen, P. (1995). A survey of recent results in passive sampling of water and air by semipermeable membrane devices. Marine Pollution Bulletin, 31(4–12), 306–312.

    Article  CAS  Google Scholar 

  • Rantalainen, A.-L., Cretney, W. J., & Ikonomou, M. G. (2000). Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment. Chemosphere, 40(2), 147–158.

    Article  CAS  Google Scholar 

  • Richardson, B. J., Tse, E. S., De Luca-Abbott, S. B., Martin, M., & Lam, P. K. (2005). Uptake and depuration of PAHs and chlorinated pesticides by semi-permeable membrane devices (SPMDs) and green-lipped mussels (Perna viridis). Marine Pollution Bulletin, 51(8–12), 975–993. https://doi.org/10.1016/j.marpolbul.2005.04.028

    Article  CAS  Google Scholar 

  • Røe Utvik, T. I., & Johnsen, S. (1999). Bioavailability of polycyclic aromatic hydrocarbons in the North Sea. Environmental Science & Technology, 33(12), 1963–1969.

    Article  Google Scholar 

  • Romanić, S. H., Vuković, G., Klinčić, D., Sarić, M. M., Župan, I., Antanasijević, D., & Popović, A. (2018). Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Cyprinidae fish: Towards hints of their arrangements using advanced classification methods. Environmental Research, 165, 349–357. https://doi.org/10.1016/j.envres.2018.05.003

    Article  CAS  Google Scholar 

  • Sanders, J. P., McBurney, A., Gilmour, C. C., Schwartz, G. E., Washburn, S., Kane Driscoll, S. B., Brown, S. S., & Ghosh, U. (2020). Development of a novel equilibrium passive sampling device for methylmercury in sediment and soil porewaters. Environmental Toxicology and Chemistry, 39(2), 323–334. https://doi.org/10.1002/etc.4631

    Article  CAS  Google Scholar 

  • Shea, D., & Hofelt, C. S. (1997). Response to comment on “Accumulation of organochlorine pesticides and PCBs by semipermeable membrane devices and Mytilus edulis in New Bedford Harbor.” Environmental Science & Technology, 31(12), 3734–3735.

    Article  CAS  Google Scholar 

  • Shobier, A., Abdel Ghani, S., & Shreadah, M. (2011). Distribution of total mercury in sediments of four semi-enclosed basins along the Mediterranean coast of Alexandria. Egyptian Journal of Aquatic Research, 37(1), 1–11.

    CAS  Google Scholar 

  • Sicre, M., Marty, J., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment (1967), 21(10), 2247–2259.

    Article  CAS  Google Scholar 

  • Soclo, H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40(5), 387–396.

    Article  CAS  Google Scholar 

  • Sörengård, M., Campos-Pereira, H., Ullberg, M., Lai, F. Y., Golovko, O., & Ahrens, L. (2019). Mass loads, source apportionment, and risk estimation of organic micropollutants from hospital and municipal wastewater in recipient catchments. Chemosphere, 234, 931–941.

    Article  Google Scholar 

  • Stuer-Lauridsen, F. (2005). Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environmental Pollution, 136(3), 503–524.

    Article  CAS  Google Scholar 

  • Tan, İ, & Aslan, E. (2020). Metal pollution status and ecological risk assessment in marine sediments of the inner Izmit Bay. Regional Studies in Marine Science, 33, 100850.

    Article  Google Scholar 

  • Tan, I., Polat Beken, Ç., & Öncel, S. (2017). Pressure-impact analysis of the coastal waters of Marmara Sea. Fresenius Environmental Bulletin, 26(4), 2689–2699.

    Google Scholar 

  • Telli-Karakoç, F., Tolun, L., Henkelmann, B., Klimm, C., Okay, O., & Schramm, K.-W. (2002). Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in the Bay of Marmara sea: Izmit Bay. Environmental Pollution, 119(3), 383–397.

    Article  Google Scholar 

  • Tolun, L., Okay, O., Gaines, A., Tolay, M., Tüfekçi, H., & Kıratlı, N. (2001). The pollution status and the toxicity of surface sediments in Izmit Bay (Marmara Sea), Turkey. Environment International, 26(3), 163–168.

    Article  CAS  Google Scholar 

  • UNEP. (2000). Stockholm convention on persistent organic pollutants. http://chm.pops.int/

  • UNEP/MAP. (2021a). Monitoring guidelines/protocols for sample preparation and analysis of seawater for IMAP common ındicator 17: Heavy and trace elements and organic contaminants

  • UNEP/MAP. (2021b). Monitoring guidelines/protocols for sampling and sample preservation of sediment for IMAP common ındicator 17: Heavy and trace elements and organic contaminant

  • USEPA. (2007). Method 3535A (SW-846): Solid-phase extraction (SPE), revision 1. In. Washington DC

  • USEPA. (2008). Polycyclic aromatic hydrocarbons (PAHs). Office of Solid Waste, 1–3

  • USEPA. (2017). Water quality standards handbook. Chapter 3: Water quality criteria. Office of Water EPA 823 B 17 001

  • Ünlülata, Ü., Oğuz, T., Latif, M., & Özsoy, E. (1990). On the physical oceanography of the Turkish Straits. The physical oceanography of sea straits, 25–60

  • Van der Veen, A., Ahlers, C., Zachmann, D. W., & Friese, K. (2006). Spatial distribution and bonding forms of heavy metals in sediments along the middle course of the River Elbe (km 287ċ390). Acta Hydrochimica Et Hydrobiologica, 34(3), 214–222.

    Article  Google Scholar 

  • Vrana, B., Allan, I. J., Greenwood, R., Mills, G. A., Dominiak, E., Svensson, K., Knutsson, J., & Morrison, G. (2005). Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry, 24(10), 845–868.

    Article  CAS  Google Scholar 

  • Vrana, B., Mills, G. A., Dominiak, E., & Greenwood, R. (2006). Calibration of the Chemcatcher passive sampler for the monitoring of priority organic pollutants in water. Environmental Pollution, 142(2), 333–343. https://doi.org/10.1016/j.envpol.2005.10.033

    Article  CAS  Google Scholar 

  • Wania, F., & Mackay, D. (1996). Peer reviewed: Tracking the distribution of persistent organic pollutants. Environmental Science & Technology, 30(9), 390A-396A.

    Article  CAS  Google Scholar 

  • WFD. (2000). DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2000 establishing a framework for Community action in the field of water policy

  • White, P. (2014). Passive sampling for quality monitoring of Irish marine waters Dublin Institute of Technology]

  • Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31(4–12), 237–248.

    Article  CAS  Google Scholar 

  • Wroniak, M., & Rękas, A. (2017). A preliminary study of PCBs, PAHs, pesticides and trace metals contamination in cold-pressed rapeseed oils from conventional and ecological cultivations. Journal of Food Science and Technology, 54(5), 1350–1356. https://doi.org/10.1007/s13197-017-2575-y

    Article  CAS  Google Scholar 

  • Yao, T., He, C., Zhang, P., Gao, H., & Zhou, C. (2013). Distribution and sources of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface waters of Jinzhou Bay in China. Procedia Environmental Sciences, 18, 317–322. https://doi.org/10.1016/j.proenv.2013.04.041

    Article  CAS  Google Scholar 

  • Yılmaz, A., Karacık, B., Henkelmann, B., Pfister, G., Schramm, K.-W., Yakan, S., Barlas, B., & Okay, O. (2014). Use of passive samplers in pollution monitoring: A numerical approach for marinas. Environment International, 73, 85–93.

    Article  Google Scholar 

  • Zhang, X., Zhang, Z.-F., Zhang, X., Yang, P.-F., Li, Y.-F., Cai, M., & Kallenborn, R. (2021). Dissolved polycyclic aromatic hydrocarbons from the Northwestern Pacific to the Southern Ocean: Surface seawater distribution, source apportionment, and air-seawater exchange. Water Research, 207, 117780. https://doi.org/10.1016/j.watres.2021.117780

    Article  CAS  Google Scholar 

  • Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling. Analytica Chimica Acta, 607(1), 37–44. https://doi.org/10.1016/j.aca.2007.11.024

    Article  CAS  Google Scholar 

  • Zhao, D., Zhang, P., Ge, L., Zheng, G. J., Wang, X., Liu, W., & Yao, Z. (2018). The legacy of organochlorinated pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Chinese coastal seawater monitored by semi-permeable membrane devices (SPMDs). Marine Pollution Bulletin, 137, 222–230.

    Article  CAS  Google Scholar 

  • Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J., & Kane Driscoll, S. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environmental Toxicology and Chemistry, 35(7), 1667–1676. https://doi.org/10.1002/etc.3461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by “Integrated Marine Pollution Monitoring (DEN-İZ) 2020-2022 Programme” carried out by Ministry of Environment, Urbanization and Climate Change / General Directorate of Environmental Impact assessment, Permit and Inspection and coordinated by TUBITAK-Marmara Research Center. The authors thank Kocaeli Municipality for their support, Gebze Technical University' Chemistry Department Instructor Assoc. To Süreyya Oğuz TÜMAY and TÜBİTAK MAM Climate Change and Sustainability Department Senior Researcher Dr. They would like to express their gratitude to Barış GÜZEL.

Author information

Authors and Affiliations

Authors

Contributions

Serkan Yeşilot: conceptualization, methodology, writing—review and editing, supervision. Nuray Çağlar Balkıs:conceptualization, methodology, writing—review and editing, supervision. Ömer Faruk Çiftbudak: validation, investigation, formal analysis, writing—review and editing. Ertuğrul Aslan: validation, investigation, formal analysis. Hakan Atabay: validation, investigation, formal analysis. Leyla Tolun: validation, investigation, formal analysis.

Corresponding authors

Correspondence to Nuray Çağlar Balkıs or Serkan Yeşilot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1418 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiftbudak, Ö.F., Aslan, E., Atabay, H. et al. Investigation of organic micropollutant pollution in İzmit Bay: a comparative study of passive sampling and instantaneous sampling techniques. Environ Monit Assess 196, 415 (2024). https://doi.org/10.1007/s10661-024-12583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12583-5

Keywords

Navigation