Skip to main content

Advertisement

Log in

Dynamic simulation and projection of ESV changes in arid regions caused by urban growth under climate change scenarios

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Spatial simulation and projection of ecosystem services value (ESV) changes caused by urban growth are important for sustainable development in arid regions. We developed a new model of cellular automata based grasshopper optimization algorithm (named GOA-CA) for simulating urban growth patterns and assessing the impacts of urban growth on ESV changes under climate change scenarios. The results show that GOA-CA yielded overall accuracy exceeding 98%, and FOM for 2010 and 2020 were 43.2% and 38.1%, respectively, indicating the effectiveness of the model. The prairie lost the highest economic ESVs (192 million USD) and the coniferous yielded the largest economic ESV increase (292 million USD) during 2000-2020. Using climate change scenarios as urban future land use demands, we projected three scenarios of the urban growth of Urumqi for 2050 and their impacts on ESV. Our model can be easily applied to simulating urban development, analyzing its impact on ESV and projecting future scenarios in global arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data we used is available at https://figshare.com/s/72197943ea773b570957.

References

  • Abd El-Hamid, H. T., Nour-Eldin, H., Rebouh, N. Y., & El-Zeiny, A. M. (2022a). Past and Future Changes of Land Use/Land Cover and the Potential Impact on Ecosystem Services Value of Damietta Governorate, Egypt. Land, 11. https://doi.org/10.3390/land11122169

  • Abd El-Hamid, H. T. T., Mustafa, E. K. K., & Osman, H. E. E. (2022b). An evaluation of ecosystem services as a result of land use changes in inland and coastal areas: a comparative study of Beijing and Freetown. Journal of Coastal Conservation, 26. https://doi.org/10.1007/s11852-022-00927-7

  • Abdullah, S., Adnan, M. S. G., Barua, D., Murshed, M. M., Kabir, Z., Chowdhury, M. B. H., et al. (2022). Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecological Informatics, 70. https://doi.org/10.1016/j.ecoinf.2022.101730

  • Agarwal, T., & Kumar, V. (2022). A Systematic Review on Bat Algorithm: Theoretical Foundation, Variants, and Applications. Archives of Computational Methods in Engineering, 29, 2707–2736. https://doi.org/10.1007/s11831-021-09673-9

    Article  Google Scholar 

  • Ahmed, G., Zan, M., & Kasimu, A. (2022). Spatial-Temporal Changes and Influencing Factors of Surface Temperature in Urumqi City Based on Multi-Source Data. Environmental Engineering Science, 39, 928–937. https://doi.org/10.1089/ees.2021.0556

    Article  CAS  Google Scholar 

  • Arowolo, A. O., Deng, X., Olatunji, O. A., & Obayelu, A. E. (2018). Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Science of the Total Environment, 636, 597–609. https://doi.org/10.1016/j.scitotenv.2018.04.277

    Article  CAS  Google Scholar 

  • Azegmout, M., Mjahed, M., El Kari, A., & Ayad, H. (2023). New Meta-heuristic-Based Approach for Identification and Control of Stable and Unstable Systems. International Journal of Computers Communications & Control, 18. https://doi.org/10.15837/ijccc.2023.4.5294

  • Bao, C., & Zou, J. (2017). Exploring the Coupling and Decoupling Relationships between Urbanization Quality and Water Resources Constraint Intensity: Spatiotemporal Analysis for Northwest China. Sustainability, 9. https://doi.org/10.3390/su9111960

  • Bie, Q., Shi, Y., Li, X., & Wang, Y. (2023). Contrastive Analysis and Accuracy Assessment of Three Global 30 m Land Cover Maps Circa 2020 in Arid Land. Sustainability, 15. https://doi.org/10.3390/su15010741

  • Cai, X., Li, Z., & Liang, Y. (2021). Tempo-spatial changes of ecological vulnerability in the arid area based on ordered weighted average model. Ecological Indicators, 133. https://doi.org/10.1016/j.ecolind.2021.108398

  • Chen, S., Feng, Y., Tong, X., Liu, S., Xie, H., Gao, C., et al. (2020). Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Science of The Total Environment, 712. https://doi.org/10.1016/j.scitotenv.2020.136509

  • Chi, J., Xu, G., Yang, Q., Liu, Y., & Sun, J. (2023). Evolutionary characteristics of ecosystem services and ecological risks at highly developed economic region: A case study on Yangtze River Delta, China. Environmental Science and Pollution Research, 30, 1152–1166. https://doi.org/10.1007/s11356-022-22313-4

    Article  Google Scholar 

  • Costanza, R., Anderson, SJ., Sutton, P., Mulder, K., Mulder, O., Kubiszewski, I, et al. 2021. The global value of coastal wetlands for storm protection. Global Environmental Change-Human and Policy Dimensions 70. https://doi.org/10.1016/j.gloenvcha.2021.102328.

  • Das, M., Das, A., & Pereira, P. (2023). Developing an integrated urban ecological efficiency framework for spatial ecological planning: A case on a tropical mega metropolitan area of the global south. Geoscience Frontiers, 14. https://doi.org/10.1016/j.gsf.2022.101489

  • Das, S., Kumar Shit, P., Bera, B., & Adhikary, P. P. (2022a). Effect of urbanization on the dynamics of ecosystem services: An analysis for decision making in Kolkata urban agglomeration. Urban Ecosystems, 25, 1541–1559. https://doi.org/10.1007/s11252-022-01246-3

    Article  Google Scholar 

  • Das, S., Shit, P. K., & Patel, P. P. (2022b). Ecosystem services value assessment and forecasting using integrated machine learning algorithm and CA-Markov model: an empirical investigation of an Asian megacity. Geocarto International, 37, 8417–8439. https://doi.org/10.1080/10106049.2021.2002424

    Article  Google Scholar 

  • Deng, Y., Liu, Y., & Fu, B. (2019). Urban growth simulation guided by ecological constraints in Beijing city: Methods and implications for spatial planning. Journal of Environmental Management, 243, 402–410. https://doi.org/10.1016/j.jenvman.2019.04.087

    Article  Google Scholar 

  • Fan, H., Xu, J., & Gao, S. (2018). Modeling the dynamics of urban and ecological binary space for regional coordination: A case of Fuzhou coastal areas in Southeast China. Habitat International, 72, 48–56. https://doi.org/10.1016/j.habitatint.2016.12.011

    Article  Google Scholar 

  • Feng, H., Lei, X., Yu, G., & Changchun, Z. (2023). Spatio-temporal evolution and trend prediction of urban ecosystem service value based on CLUE-S and GM (1,1) compound model. Environmental Monitoring and Assessment, 195. https://doi.org/10.1007/s10661-023-11853-y

  • Feng, Y., & Tong, X. (2018). Calibration of cellular automata models using differential evolution to simulate present and future land use. Transactions in GIS, 22, 582–601. https://doi.org/10.1111/tgis.12331

    Article  Google Scholar 

  • Feng, Y., & Tong, X. (2020). A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. International Journal of Geographical Information Science, 34, 74–97. https://doi.org/10.1080/13658816.2019.1648813

    Article  Google Scholar 

  • Feng, Y., Wang, J., Tong, X., Liu, Y., Lei, Z., Gao, C., et al. (2018). The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models. Sustainability, 10. https://doi.org/10.3390/su10114002

  • Gao, C., Feng, Y., Tong, X., Jin, Y., Liu, S., Wu, P., et al. (2020). Modeling urban encroachment on ecological land using cellular automata and cross-entropy optimization rules. Science of the Total Environment, 744. https://doi.org/10.1016/j.scitotenv.2020.140996

  • Gao, C., Feng, Y., Xi, M., Wang, R., Li, P., Tang, X., et al. (2023). An improved assessment method for urban growth simulations across models, regions, and time. International Journal of Geographical Information Science, 37, 2345–2366. https://doi.org/10.1080/13658816.2023.2264942

    Article  Google Scholar 

  • Ghosh, S., Chatterjee, N. D., & Dinda, S. (2021). Urban ecological security assessment and forecasting using integrated DEMATEL-ANP and CA-Markov models: A case study on Kolkata Metropolitan Area, India. Sustainable Cities and Society, 68. https://doi.org/10.1016/j.scs.2021.102773

  • Guo, S., Wu, C., Wang, Y., Qiu, G., Zhu, D., Niu, Q., et al. (2022). Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecological Indicators, 136. https://doi.org/10.1016/j.ecolind.2022.108603

  • Hempson, G. P., Parr, C. L., Lehmann, C. E. R., & Archibald, S. (2022). Grazing lawns and overgrazing in frequently grazed grass communities. Ecology and Evolution, 12. https://doi.org/10.1002/ece3.9268

  • Hu, Y., Zhang, Y., & Ke, X. (2018). Dynamics of Tradeoffs between Economic Benefits and Ecosystem Services due to Urban Expansion. Sustainability, 10. https://doi.org/10.3390/su10072306

  • Huang, Y., & Liao, T.-J. (2019). An integrating approach of cellular automata and ecological network to predict the impact of land use change on connectivity. Ecological Indicators, 98, 149–157. https://doi.org/10.1016/j.ecolind.2018.10.065

    Article  Google Scholar 

  • Jafari, M., Majedi, H., Monavari, S., Alesheikh, A., & Kheirkhah Zarkesh, M. (2016). Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran. Sustainability, 8. https://doi.org/10.3390/su8080810

  • Jia, Q., Jiao, L., Hu, Y., Lian, X., Tian, Y., Liu, X., et al. (2023). Telecoupling indirect ecological impacts of urban expansion in China from the perspective of the food trade. Land Degradation & Development, 34, 4964–4976. https://doi.org/10.1002/ldr.4822

    Article  Google Scholar 

  • Kang, L., Jia, Y., & Zhang, S. (2022). Spatiotemporal distribution and driving forces of ecological service value in the Chinese section of the ?Silk Road Economic Belt? Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109074

  • Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Science of the Total Environment, 547, 137–147. https://doi.org/10.1016/j.scitotenv.2015.12.127

    Article  CAS  Google Scholar 

  • Lei, Z., Feng, Y., Tong, X., Liu, S., Gao, C., & Chen, S. (2020). A spatial error-based cellular automata approach to reproducing and projecting dynamic urban expansion. Geocarto International, 37, 560–580. https://doi.org/10.1080/10106049.2020.1726508

    Article  Google Scholar 

  • Li, L., Tang, H., Lei, J., & Song, X. (2022a). Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecological Indicators, 137. https://doi.org/10.1016/j.ecolind.2022.108727

  • Li, P., Zhang, R., & Xu, L. (2021). Three-dimensional ecological footprint based on ecosystem service value and their drivers: A case study of Urumqi. Ecological Indicators, 131. https://doi.org/10.1016/j.ecolind.2021.108117

  • Li, Q., Feng, Y., Tong, X., Zhou, Y., Wu, P., Xie, H., et al. (2022b). Firefly algorithm-based cellular automata for reproducing urban growth and predicting future scenarios. Sustainable Cities and Society, 76. https://doi.org/10.1016/j.scs.2021.103444

  • Lv, Z., & Peng, R. (2022). A novel grasshopper optimization algorithm based on swarm state difference and its application. Journal of Intelligent & Fuzzy Systems, 42, 5973–5986. https://doi.org/10.3233/jifs-212633

    Article  Google Scholar 

  • Maimaiti, B., Chen, S., Kasimu, A., Mamat, A., Aierken, N., & Chen, Q. (2022). Coupling and Coordination Relationships between Urban Expansion and Ecosystem Service Value in Kashgar City. Remote Sensing, 14. https://doi.org/10.3390/rs14112557

  • Manlike, A., Sawut, R., Zheng, FL., Li, XS, Abudukelimu, R. 2020. Monitoring and analysing grassland ecosystem service values in response to grassland area changes - an example from northwest China. Rangeland Journal 42, 179-194. https://doi.org/10.1071/rj20014.

  • Masenyama, A., Mutanga, O., Dube, T., Bangira, T., Sibanda, M., & Mabhaudhi, T. (2022). A systematic review on the use of remote sensing technologies in quantifying grasslands ecosystem services. Giscience & Remote Sensing, 59, 1000–1025. https://doi.org/10.1080/15481603.2022.2088652

    Article  Google Scholar 

  • Meraihi, Y., Gabis, A. B., Mirjalili, S., & Ramdane-Cherif, A. (2021). Grasshopper Optimization Algorithm: Theory, Variants, and Applications. Ieee Access., 9, 50001–50024. https://doi.org/10.1109/access.2021.3067597

    Article  Google Scholar 

  • Mirbagheri, B., & Alimohammadi, A. (2017). Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Transactions in GIS, 21, 1280–1297. https://doi.org/10.1111/tgis.12278

    Article  Google Scholar 

  • Morshed, S. R., Fattah, M. A., Haque, M. N., & Morshed, S. Y. (2022). Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Physics and Chemistry of the Earth, 126. https://doi.org/10.1016/j.pce.2021.103021

  • Muyibul, Z., Tan, X., Tuniyazi, J., & Du, R. (2023). Relationships between Tourism, Urbanization and Ecosystem Service Value in the Cities of Xinjiang in Northwest China. Sustainability, 15. https://doi.org/10.3390/su15054190

  • Narducci, J., Quintas-Soriano, C., Castro, A., Som-Castellano, R., & Brandt, J. S. (2019). Implications of urban growth and farmland loss for ecosystem services in the western United States. Land Use Policy, 86, 1–11. https://doi.org/10.1016/j.landusepol.2019.04.029

    Article  Google Scholar 

  • Njagi, D. M., Routh, J., Odhiambo, M., Luo, C., Basapuram, L. G., Olago, D., et al. (2022). A century of human-induced environmental changes and the combined roles of nutrients and land use in Lake Victoria catchment on eutrophication. Science of the Total Environment, 835, 155425. https://doi.org/10.1016/j.scitotenv.2022.155425

    Article  CAS  Google Scholar 

  • Ouyang, X., & Luo, X. (2022). Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability, 14. https://doi.org/10.3390/su14084725

  • Ouyang, X., Tang, L., Wei, X., & Li, Y. (2021). Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations. Land Use Policy, 109. https://doi.org/10.1016/j.landusepol.2021.105587

  • Parivar, P., Quanrud, D., Sotoudeh, A., & Abolhasani, M. (2021). Evaluation of urban ecological sustainability in arid lands (case study: Yazd-Iran). Environment Development and Sustainability, 23, 2797–2826. https://doi.org/10.1007/s10668-020-00637-w

    Article  Google Scholar 

  • Peng, S., Feng, Z., Liao, H., Huang, B., Peng, S., & Zhou, T. (2019). Spatial-temporal pattern of, and driving forces for, urban heat island in China. Ecological Indicators, 96, 127–132. https://doi.org/10.1016/j.ecolind.2018.08.059

    Article  Google Scholar 

  • Pereira, J. L. J., Francisco, M. B., de Almeida, F. A., Ma, B. J., Cunha, S. S., & Gomes, G. F. (2023). Enhanced Lichtenberg algorithm: a discussion on improving meta-heuristics. Soft Computing. https://doi.org/10.1007/s00500-023-08782-w

  • Peterson, E. K., Jones, C. D., Sandmeier, F. C., Rivas, A. P. A., Back, C. A., Canney, A., et al. (2021). Drought influences biodiversity in a semi-arid shortgrass prairie in southeastern Colorado. Journal of Arid Environments, 195. https://doi.org/10.1016/j.jaridenv.2021.104633

  • Pontius, R. G., Jr., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., et al. (2008). Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42, 11–37. https://doi.org/10.1007/s00168-007-0138-2

    Article  Google Scholar 

  • Prangel, E., Kasari-Toussaint, L., Neuenkamp, L., Noreika, N., Karise, R., Marja, R., et al. (2023). Afforestation and abandonment of semi-natural grasslands lead to biodiversity loss and a decline in ecosystem services and functions. Journal of Applied Ecology, 60, 825–836. https://doi.org/10.1111/1365-2664.14375

    Article  Google Scholar 

  • Promila, Kumar, K. E. M., & Sharma, P. (2023). Assessment of ecosystem service value variation over the changing patterns of land degradation and land use/land cover. Environmental Earth Sciences, 82. https://doi.org/10.1007/s12665-022-10681-6

  • Raj, A., & Sharma, L. K. (2023). Spatial E-PSR modelling for ecological sensitivity assessment for arid rangeland resilience and management. Ecological Modelling, 478. https://doi.org/10.1016/j.ecolmodel.2023.110283

  • Rocha Ferreira, L. M., Esteves, L. S., de Souza, E. P., & Costa dos Santos, C. A. (2019). Impact of the Urbanisation Process in the Availability of Ecosystem Services in a Tropical Ecotone Area. Ecosystems, 22, 266–282. https://doi.org/10.1007/s10021-018-0270-0

    Article  Google Scholar 

  • Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper Optimisation Algorithm: Theory and application. Advances in Engineering Software, 105, 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  • Segnon, A. C., Totin, E., Zougmoré, R. B., Lokossou, J. C., Thompson-Hall, M., Ofori, B. O., et al. (2020). Differential household vulnerability to climatic and non-climatic stressors in semi-arid areas of Mali, West Africa. Climate and Development, 13, 697–712. https://doi.org/10.1080/17565529.2020.1855097

    Article  Google Scholar 

  • Shrestha, S., Poudyal, K. N., Bhattarai, N., Dangi, M. B. B., & Boland, J. J. J. (2022). An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS. Sustainability, 14. https://doi.org/10.3390/su142315739

  • Tan, Z., Guan, Q., Lin, J., Yang, L., Luo, H., Ma, Y., et al. (2020). The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecological Indicators, 118. https://doi.org/10.1016/j.ecolind.2020.106711

  • Tang, X., Feng, Y., Gao, C., Lei, Z., Chen, S., Wang, R., et al. (2023). Entropy-weight-based spatiotemporal drought assessment using MODIS products and Sentinel-1A images in Urumqi, China. Natural Hazards, 119, 387–408. https://doi.org/10.1007/s11069-023-06131-6

    Article  Google Scholar 

  • Tiando, D. S., Hu, S., Fan, X., & Ali, M. R. (2021). Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa. International Journal of Environmental Research and Public Health, 18. https://doi.org/10.3390/ijerph18147416

  • Tolessa, T., Senbeta, F., & Kidane, M. (2017). The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosystem Services, 23, 47–54. https://doi.org/10.1016/j.ecoser.2016.11.010

    Article  Google Scholar 

  • Tong, X., & Feng, Y. (2020). A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 34, 866–898. https://doi.org/10.1080/13658816.2019.1684499

    Article  Google Scholar 

  • Wang, R., Feng, Y., Wei, Y., Tong, X., Zhai, S., Zhou, Y., et al. (2021). A comparison of proximity and accessibility drivers in simulating dynamic urban growth. Transactions in GIS, 25, 923–947. https://doi.org/10.1111/tgis.12707

    Article  Google Scholar 

  • Xi, M., Feng, Y., Tong, X., Gao, F., Li, P., Wang, R., et al. (2023). Development of a parallel computing-based Futureland model for multiple land-use simulation: a case study in Shanghai. Geocarto International, 38. https://doi.org/10.1080/10106049.2023.2216675

  • Xiao, R., Lin, M., Fei, X., Li, Y., Zhang, Z., & Meng, Q. (2020). Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai-Hangzhou Bay Metropolitan Region. Journal of Cleaner Production, 253. https://doi.org/10.1016/j.jclepro.2019.119803

  • Xie, G., Zhang, C., Zhen, L., & Zhang, L. (2017). Dynamic changes in the value of China’s ecosystem services. Ecosystem Services, 26, 146–154. https://doi.org/10.1016/j.ecoser.2017.06.010

    Article  Google Scholar 

  • Xing, L., Xue, M., & Wang, X. (2018). Spatial correction of ecosystem service value and the evaluation of eco-efficiency: A case for China’s provincial level. Ecological Indicators, 95, 841–850. https://doi.org/10.1016/j.ecolind.2018.08.033

    Article  Google Scholar 

  • Yang, M., Gao, X., Siddique, K. H. M., Wu, P., & Zhao, X. (2023). Spatiotemporal exploration of ecosystem service, urbanization, and their interactive coercing relationship in the Yellow River Basin over the past 40 years. Science of the Total Environment, 858. https://doi.org/10.1016/j.scitotenv.2022.159757

  • Yilmaz, M., & Terzi, F. (2023). Quantitative spatial assessment of the impact of urban growth on the landscape network of Turkiye's coastal cities. Environmental Monitoring and Assessment, 195, 466. https://doi.org/10.1007/s10661-023-11084-1

    Article  Google Scholar 

  • Yirsaw, E., Wu, W., Temesgen, H., & Bekele, B. (2016). Effect of temporal land use/land cover changes on ecosystem services value in coastal area of china: the case of su-xi-chang region. Applied Ecology and Environmental Research, 14, 409–422. https://doi.org/10.15666/aeer/1403_409422

    Article  Google Scholar 

  • Yu, Q., Feng, C-C., Shi, Y, Guo, L. 2021. Spatiotemporal interaction between ecosystem services and urbanization in China: Incorporating the scarcity effects. Journal of Cleaner Production 317. https://doi.org/10.1016/j.jclepro.2021.128392.

  • Zandebasiri, M., Goujani, H. J., Iranmanesh, Y., Azadi, H., Viira, A.-H., & Habibi, M. (2023). Ecosystem services valuation: a review of concepts, systems, new issues, and considerations about pollution in ecosystem services. Environmental Science and Pollution Research, 30, 83051–83070. https://doi.org/10.1007/s11356-023-28143-2

    Article  Google Scholar 

  • Zhang, J., Zhou, Q., Cao, M., & Liu, H. (2022). Spatiotemporal Change of Eco-Environmental Quality in the Oasis City and Its Correlation with Urbanization Based on RSEI: A Case Study of Urumqi, China. Sustainability, 14. https://doi.org/10.3390/su14159227

  • Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., & Mi, J. (2021). GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13, 2753–2776. https://doi.org/10.5194/essd-13-2753-2021

    Article  Google Scholar 

  • Zhang, Y., Gong, N., & Zhu, H. (2023). Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20021225

  • Zhang, Y., Liu, Y., Zhang, Y., Liu, Y., Zhang, G., & Chen, Y. (2018). On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Science of the Total Environment, 637, 780–790. https://doi.org/10.1016/j.scitotenv.2018.04.396

    Article  CAS  Google Scholar 

  • Zhao, J., Zhu, X., Zhou, Y., Guo, K., & Huang, Y. (2023). Examining Land-Use Change Trends in Yucheng District, Ya'an City, China, Using ANN-CA Modeling. Journal of Urban Planning and Development, 149. https://doi.org/10.1061/(asce)up.1943-5444.0000905

  • Zhou, X., Ma, H., Gu, J., Chen, H., & Deng, W. (2022). Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism. Engineering Applications of Artificial Intelligence, 114. https://doi.org/10.1016/j.engappai.2022.105139

  • Zhu, Z., Fu, W., & Liu, Q. (2021). Correlation between urbanization and ecosystem services in Xiamen, China. Environment Development and Sustainability, 23, 101–121. https://doi.org/10.1007/s10668-019-00567-2

    Article  CAS  Google Scholar 

  • Zhuang, H., Liu, X., Yan, Y., Zhang, D., He, J., He, J., et al. (2022). Integrating a deep forest algorithm with vector-based cellular automata for urban land change simulation. Transactions in GIS, 26, 2056–2080. https://doi.org/10.1111/tgis.12935

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (42071371).

Funding

This study was supported by the National Natural Science Foundation of China (42071371).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyan Tang performed the experiments, analyzed the results, and wrote the manuscript.

Yongjiu Feng conceived the idea and revised the manuscript.

Mengrong Xi participated in the experiments and the analysis of the results.

Shurui Chen participated in the experiments and the analysis of the results.

Rong Wang participated in writing and editing.

Zhenkun Lei participated in the discussion of the results.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Yongjiu Feng.

Ethics declarations

Competing interests

The authors declare there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Feng, Y., Xi, M. et al. Dynamic simulation and projection of ESV changes in arid regions caused by urban growth under climate change scenarios. Environ Monit Assess 196, 411 (2024). https://doi.org/10.1007/s10661-024-12559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12559-5

Keywords

Navigation