Skip to main content
Log in

Geochemical processes, salinity sources and utility characterization of groundwater in a semi-arid region of Iraq through geostatistical and isotopic techniques

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identifying factors contributing to water salinity is paramount in efficiently managing limited water resources in arid environments. The primary objective of this study is to enhance understanding regarding the hydrochemistry, source, and mechanism of water salinity, as well as to assess the suitability of water for various uses in southern Iraq. The groundwater samples were collected from water wells and springs and analyzed for major cations and anions along with stable isotopes (δ18O and δ2H) to accomplish the objective. The analysis of major ion chemistry, hydrochemical techniques, principal component analysis (PCA), and isotope signatures were adopted to determine the primary factors contributing to water mineralization. The study inferred that evaporation and geological processes encompassing water–rock interactions, such as dissolution precipitation and ion exchange, were key processes. The stable isotope analysis revealed that the water originated from meteoric sources and underwent significant evaporation during or before infiltration. The utility assessment of water samples indicates that most samples are not appropriate for consumption and are significantly below the established standards for potable water. In contrast, a significant portion of the groundwater samples were found to meet the criteria for irrigation suitability by adopting Wilcox and the US Salinity Laboratory criteria. The groundwater could be considered for irrigation with proper salinity control management. Overall, this study has significantly improved the understanding of the hydrogeochemical regimes and acts as a first step toward the sustainable utilization of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data cannot be shared openly but are available on request from authors.

References

  • Abu-Alnaeem, M. F., Yusoff, T., Alias, N. Y., & Raksmey, M. (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615, 972–989.

    Article  CAS  Google Scholar 

  • Ahmed, A., & Clark, I. (2016). Groundwater flow and geochemical evolution in the Central Flinders Ranges, South Australia. Science of the Total Environment, 572, 837–851.

    Article  CAS  Google Scholar 

  • Al-Naseri, S. K., Falih, A. H., & Saravana Kumar, U. (2022). Moisture sources and spatio-temporal variation of isotopic signatures in Iraqi precipitation. Environmental Earth Sciences, 81(18). https://doi.org/10.1007/s12665-022-10559-7

  • Aliewi, A., Bhandary, H., Chidambaram, S., & Al-Qallaf, H. (2022). A new modified chloride mass balance approach based on aquifer hydraulic properties and other sources of chloride to assess rainfall recharge in brackish aquifers. Hydrological Processes, 36(3). https://doi.org/10.1002/hyp.14513

  • American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Wastewater (27th ed.).

    Google Scholar 

  • Arumugam, K., & Elangovan, K. (2009). Hydrochemical characteristics and groundwater quality assessment in Tirupur region, Coimbatore district, Tamil Nadu India. Environmental Earth Sciences, 58(7), 1509–1520.

    CAS  Google Scholar 

  • Barlow, P. M., & Reichard, E. G. (2010). Saltwater intrusion in coastal regions of North America. Hydrogeology Journal, 18(1), 247–260. https://doi.org/10.1007/s10040-009-0514-3

    Article  CAS  Google Scholar 

  • Belkhiri, L., Mouni, L., & Boudoukha, A. (2012). Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria. Journal of African Earth Sciences, 66–67, 46–55. https://doi.org/10.1016/j.jafrearsci.2012.03.001

    Article  CAS  Google Scholar 

  • Bennetts, D., Webb, J. A., Stone, D. J., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1–4), 178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023

    Article  Google Scholar 

  • Bhandary, H., Chidambaram, S., & Al-Khalid, A. (2018). Occurrence of hypersaline groundwater along the coastal aquifers of Kuwait. Desalination, 436, 15–27. https://doi.org/10.1016/j.desal.2018.02.004

    Article  CAS  Google Scholar 

  • Boosalik, Z., Jafari, H., Clark, I. D., & Bagheri, R. (2022). Chemo-isotopic tracing of the groundwater salinity in arid regions: An example of Shahrood aquifer (Iran). Journal of Geochemical Exploration, 239, 107029. https://doi.org/10.1016/j.gexplo.2022.107029

    Article  CAS  Google Scholar 

  • Carol, E. S., Kruse, E. E., & Mas-Pla, J. (2009). Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay Argentina. Journal of Hydrology, 365(3–4), 335–345. https://doi.org/10.1016/j.jhydrol.2008.11.041

    Article  CAS  Google Scholar 

  • Chen, Y., Vigouroux, G., Bring, A., Cvetković, V., & Destouni, G. (2019). Dominant hydro-climatic drivers of water temperature, salinity, and flow variability for the large-scale system of the Baltic Coastal Wetlands. Water, 11(3), 552. https://doi.org/10.3390/w11030552

    Article  Google Scholar 

  • Chidambaram, S., Bhandary, H., & Al-Khalid, A. (2020). Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait. Arabian Journal of Geosciences, 13(21). https://doi.org/10.1007/s12517-020-06116-w

  • Chidambaram, S., Bhandary, H., & Hadi, K. (2021). CHIDAM -A software for chemical interpretation of the dissolved ions in aqueous media. Groundwater for Sustainable Development, 13, 100496. https://doi.org/10.1016/j.gsd.2020.100496

    Article  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Karmegam, U., Singaraja, C., Pethaperumal, S., Manivannan, R., Anandhan, P., & Tirumalesh, K. (2011). Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region India. Frontiers of Earth Science, 5(2), 197–206. https://doi.org/10.1007/s11707-011-0170-5

    Article  CAS  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Senapathi, V., Nepolian, M., Pradeep, K., Panda, B., Thivya, C., & Thilagavathi, R. (2022). Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environmental Research, 204, 111729. https://doi.org/10.1016/j.envres.2021.111729

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (2013). Environmental isotopes in hydrogeology. CRC Press eBooks. https://doi.org/10.1201/9781482242911

    Book  Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus B: Chemical and Physical Meteorology, 16(4), 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Davis, S., & DeWiest, R. (1966). M (p. 463). Hydrogeology.

    Google Scholar 

  • Del Pilar Álvarez, M., Carol, E. S., & Dapeña, C. (2015). The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina). Science of the Total Environment, 506–507, 299–307. https://doi.org/10.1016/j.scitotenv.2014.11.028

    Article  CAS  Google Scholar 

  • Drever, J. I. (1988). The Geochemistry of Natural Waters. 2nd Edition, Prentice-Hall, Englewood Cliffs, p. 437. https://openlibrary.org/books/OL2388438M/The_geochemistry_of_natural_waters

  • Durov, S. A. (1948). Classification of natural waters and graphical representation of their composition. Doklady Akademii Nauk SSSR, 59, 87–90.

    CAS  Google Scholar 

  • Fipps, G. (2003). Irrigation water quality standards and salinity management strategies Texas a&M AgriLife Extension. http://infohouse.p2ric.org/ref/11/10685.pdf

    Google Scholar 

  • Fouad, S. F. (2015). Tectonic map of Iraq, scale 1: 1000 000, 3rd EDITION, 2012. Iraqi Bulletin of Geology and Mining, 11(1), 1–7 http://ibgm-iq.org/ibgm/index.php/ibgm/article/view/262

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall Inc., Englewood Cliffs, Vol. 7632, 604.

  • Fu, C., Li, X., Ma, J., Liu, L., Gao, M., & Bai, Z. (2018). A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin. Applied Geochemistry, 98, 82–93. https://doi.org/10.1016/j.apgeochem.2018.08.030

    Article  CAS  Google Scholar 

  • Gat, J., & Carmi, I. (1970). Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research, 75(15), 3039–3048. https://doi.org/10.1029/jc075i015p03039

    Article  CAS  Google Scholar 

  • Giambastiani, B., Colombani, N., Mastrocicco, M., & Fidelibus, M. D. (2013). Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system. Journal of Hydrology, 501, 35–44. https://doi.org/10.1016/j.jhydrol.2013.07.037

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  CAS  Google Scholar 

  • Guggenmos, M., Daughney, C. J., Jackson, B., & Morgenstern, U. (2011). Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrology and Earth System Sciences, 15(11), 3383–3398. https://doi.org/10.5194/hess-15-3383-2011

    Article  CAS  Google Scholar 

  • Güler, C., Kurt, M. A., Alpaslan, M., & Akbulut, C. (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414–415, 435–451. https://doi.org/10.1016/j.jhydrol.2011.11.021

    Article  CAS  Google Scholar 

  • Han, D., & Currell, M. (2018). Delineating multiple salinization processes in a coastal plain aquifer, northern China: Hydrochemical and isotopic evidence. Hydrology and Earth System Sciences, 22(6), 3473–3491. https://doi.org/10.5194/hess-22-3473-2018

    Article  CAS  Google Scholar 

  • Iraqi Meteorological Organization (IMO). (2020). Climatically Data for Haditha meteorological station for the period (1988 - 2019), Baghdad, Iraq, Iraqi Meteorological Organization (IMO).

  • Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., & Van Stempvoort, D. R. (2013). Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Groundwater, 51(4), 488–510. https://doi.org/10.1111/gwat.12074

    Article  CAS  Google Scholar 

  • Jassim, S. Z., & Goff, J. C. (2006). “Geology of Iraq” 1st Edition, published by Dolin. Brno Printed in the Czech Republic.

    Google Scholar 

  • Kammoun, S., Trabelsi, R., Ré, V., Zouari, K., & Henchiri, J. (2018). Groundwater quality assessment in semi-arid regions using integrated approaches: The case of Grombalia aquifer (NE Tunisia). Environmental Monitoring and Assessment, 190(2). https://doi.org/10.1007/s10661-018-6469-x

  • Katerji, N., Van Hoorn, J., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1), 37–66. https://doi.org/10.1016/s0378-3774(03)00005-2

    Article  Google Scholar 

  • Kharroubi, A., Tlahigue, F., Agoubi, B., Azri, C., & Bouri, S. (2012). Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: Case of the Jerba coastal aquifer in southeast Tunisia. Environmental Earth Sciences, 67(7), 2089–2100. https://doi.org/10.1007/s12665-012-1648-5

    Article  CAS  Google Scholar 

  • Khezzani, B., & Bouchemal, S. (2018). Variations in groundwater levels and quality due to agricultural over-exploitation in an arid environment: the phreatic aquifer of the Souf oasis (Algerian Sahara). Environmental Earth Sciences, 77(4). https://doi.org/10.1007/s12665-018-7329-2

  • Kim, J. H., Kim, R. H., Lee, J., & Chang, H. (2003). Hydrogeochemical characterization of major factors affecting the quality of shallow groundwater in the coastal area at Kimje in South Korea. Environmental Geology, 44(4), 478–489. https://doi.org/10.1007/s00254-003-0782-5

    Article  CAS  Google Scholar 

  • Kim, K. (2003). Long-Term disturbance of ground water chemistry following well installation. Groundwater, 41(6), 780–789. https://doi.org/10.1111/j.1745-6584.2003.tb02419.x

    Article  CAS  Google Scholar 

  • Li, C., Gao, X., Liu, Y., & Wang, Y. (2019). Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes. Journal of Hydrology, 579, 124211. https://doi.org/10.1016/j.jhydrol.2019.124211

    Article  CAS  Google Scholar 

  • Liu, J., Chen, Z., Wang, L., Zhang, Y., Li, Z., Xu, J., & Peng, Y. (2016). Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia. Environmental Science and Pollution Research, 23(15), 15003–15014. https://doi.org/10.1007/s11356-016-6617-1

    Article  CAS  Google Scholar 

  • Liu, J., Gao, Z., Wang, Z., Xu, X., Su, Q., Shu, W., Qu, W., & Xing, T. (2020). Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China. Environmental Monitoring and Assessment, 192(6). https://doi.org/10.1007/s10661-020-08356-5

  • Lü, C., Wang, G., Hu, F., Wang, Y., & Liang, L. (2013). Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China. Journal of Arid Land, 6(4), 378–388. https://doi.org/10.1007/s40333-013-0249-9

    Article  Google Scholar 

  • Martin, A. (2001). Late Permian to Holocene Paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6(3), 445–504. https://doi.org/10.2113/geoarabia0603445

    Article  Google Scholar 

  • Mastrocicco, M., Gervasio, M. P., Busico, G., & Colombani, N. (2021). Natural and anthropogenic factors driving groundwater resources salinization for agriculture use in the Campania plains (Southern Italy). Science of the Total Environment, 758, 144033. https://doi.org/10.1016/j.scitotenv.2020.144033

    Article  CAS  Google Scholar 

  • Maskooni, E. K., Hashemi, H., Kompanizare, M., Arasteh, P. D., Vagharfard, H., & Berndtsson, R. (2021). Assessment of hydro-geochemical properties of groundwater under the effect of desalination wastewater discharge in an arid area. Environmental Science and Pollution Research, 28(5), 6176–6194. https://doi.org/10.1007/s11356-020-10787-z

    Article  CAS  Google Scholar 

  • Memon, M. A., Soomro, M. S., Akhtar, M. A., & Memon, K. S. (2010). Drinking water quality assessment in Southern Sindh (Pakistan). Environmental Monitoring and Assessment, 177(1–4), 39–50. https://doi.org/10.1007/s10661-010-1616-z

    Article  CAS  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428. https://doi.org/10.2475/ajs.287.5.401

    Article  CAS  Google Scholar 

  • Nair, I. S., Brindha, K., & Elango, L. (2020). Assessing the origin and processes controlling groundwater salinization in coastal aquifers through integrated hydrochemical, isotopic and hydrogeochemical modelling techniques. Hydrological Sciences Journal-journal Des Sciences Hydrologiques, 66(1), 152–164. https://doi.org/10.1080/02626667.2020.1826490

    Article  CAS  Google Scholar 

  • Najib, S., Fadili, A., Mehdi, K., Riss, J., & Makan, A. (2017). Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. Journal of Contaminant Hydrology, 198, 24–36. https://doi.org/10.1016/j.jconhyd.2017.01.003

    Article  CAS  Google Scholar 

  • Nepolian, M., Chidambaram, S., Prasanna, M. V., Senapathi, V., Sekar, S., Devaraj, N. K., Gopalakrishnan, G., & Mahalakshmi, M. (2022). Source, mobilization and distribution of uranium in a complex aquifer system: A spatial and temporal evaluation using geochemical, statistics and GIS approach. Environmental Earth Sciences, 81(7). https://doi.org/10.1007/s12665-022-10291-2

  • Panda, B., Chidambaram, S., Nagappan, G., Thilagavathi, R., & Kamaraj, P. (2020). Multiple thematic spatial integration technique to identify the groundwater recharge potential zones—A case study along the Courtallam region, Tamil Nadu, India. Arabian Journal of Geosciences, 13(24). https://doi.org/10.1007/s12517-020-06223-8

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: An example from Crete Greece. Hydrological Processes, 21(11), 1482–1495. https://doi.org/10.1002/hyp.6322

    Article  CAS  Google Scholar 

  • Pillai, A., Chidambaram, S., Keesari, T., Thivya, C., Thilagavathi, R., Senapathi, V., Prasanna, M. V., & Samayamanthu, D. R. (2020). Seasonal changes in groundwater quality deterioration and chemometric analysis of pollution source identification in South India. Environmental Science and Pollution Research, 27(16), 20037–20054. https://doi.org/10.1007/s11356-020-08258-6

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, 25(6), 914. https://doi.org/10.1029/tr025i006p00914

    Article  Google Scholar 

  • Polemio, M. (2020). Review of utilization management of groundwater at risk of salinization. Journal of Water Resources Planning and Management, 146(9). https://doi.org/10.1061/(asce)wr.1943-5452.0001278

  • Prasanna, M. V., Chidambaram, S., Kumar, G., Ramanathan, A., & Nainwal, H. C. (2010). Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District South India Arabian. Journal of Geosciences, 4(1–2), 319–330. https://doi.org/10.1007/s12517-010-0191-5

    Article  CAS  Google Scholar 

  • Pulido-Bosch, A., Rigol-Sánchez, J., Vallejos, Á., Andreu, J. M., Cerón, J. C., Molina-Sánchez, L., & Sola, F. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental Earth Sciences, 77(5). https://doi.org/10.1007/s12665-018-7386-6

  • Rao, N. S. (2005). Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh India. Environmental Geology, 49(3), 413–429. https://doi.org/10.1007/s00254-005-0089-9

    Article  CAS  Google Scholar 

  • Rashid, T., Chidambaram, S., Al-Qallaf, H., Bhandary, H., Al-Jomaa, M., Shishter, A., & Al-Salman, B. (2022). Evolution of hydrogeochemistry in groundwater production fields of Kuwait–Inferences from long-term data. Chemosphere, 307, 135734. https://doi.org/10.1016/j.chemosphere.2022.135734

    Article  CAS  Google Scholar 

  • Rasouli, F., Pouya, A. K., & Cheraghi, S. M. (2011). Hydrogeochemistry and water quality assessment of the Kor–Sivand Basin, Fars province Iran. Environmental Monitoring and Assessment, 184(8), 4861–4877. https://doi.org/10.1007/s10661-011-2308-z

    Article  CAS  Google Scholar 

  • Samayamanthula, D. R., Chidambaram, S., Alayyadhi, N. A., Al-Ajeel, F. K., Al-Qallaf, H., & Akber, A. (2022). Spatial and temporal variation of dissolved CO2 in rainwater from an arid region with special focus on its association with DIC and pCO2. Environmental Earth Sciences, 81(4). https://doi.org/10.1007/s12665-022-10176-4

  • Schoeller, H. (1967). Qualitative evaluation of ground water resources. In H. Schoeller (Ed.), Methods and Techniques of Groundwater Investigation and Development Water Resource Series (Vol. 33, pp. 44–52). UNESCO.

    Google Scholar 

  • Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. V., Tewary, B. K., & Sinha, A. (2007). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin India. Environmental Geology, 54(4), 745–758. https://doi.org/10.1007/s00254-007-0860-1

    Article  CAS  Google Scholar 

  • Sissakian, V., & Mahmud, B. (2007). Stratigraphy of the Iraqi Western Desert. IBGM, SCGSM, 51–125.

  • Stuyfzand, P. J. (1993). Hydrochemistry and hydrology of coastal dune area of the Western Netherlands. Thesis, Free University of Amsterdam.

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region. Southern India. Environmental Monitoring and Assessment, 162(1–4), 123–137. https://doi.org/10.1007/s10661-009-0781-4

    Article  CAS  Google Scholar 

  • Tarawneh, M. S. M., Janardhana, M. R., & Ahmed, M. M. (2019). Hydrochemical processes and groundwater quality assessment in Northeastern region of Jordan valley, Jordan. HydroResearch, 2, 129–145. https://doi.org/10.1016/j.hydres.2020.02.001

    Article  Google Scholar 

  • Thilagavathi, R., Chidambaram, S., Thivya, C., Prasanna, M. V., Keesari, T., & Pethaperumal, S. (2017). Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis. Sustainable Water Resources Management, 3(1), 55–69. https://doi.org/10.1007/s40899-017-0078-7

    Article  Google Scholar 

  • Thilagavathi, R., Chidambaram, S., Thivya, C., Prasanna, M. V., Singaraja, C., Tirumalesh, K., & Pethaperumal, S. (2014). Delineation of natural and anthropogenic process controlling hydrogeochemistry of layered aquifer sequence. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84(1), 95–108. https://doi.org/10.1007/s40010-013-0114-4

    Article  CAS  Google Scholar 

  • Tomaz, A., Palma, P., Fialho, S., Lima, A., Alvarenga, P., Potes, M., Costa, M. J., & Salgado, R. (2020). Risk assessment of irrigation-related soil salinization and sodification in Mediterranean areas. Water, 12(12), 3569. https://doi.org/10.3390/w12123569

    Article  Google Scholar 

  • USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agr. Handbook No.60.

    Google Scholar 

  • WHO. (2004). Guidelines for Drinking Water Quality, Volume 1: Recommendations. 3rd Edition, WHO, Geneva.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and Use of Irrigation Water. US Department of Agriculture, Circular 969, Washington DC.

    Google Scholar 

  • Xu, F., Li, P., Wang, Y., & Du, Q. (2023). Integration of hydrochemistry and stable isotopes for assessing groundwater recharge and evaporation in pre- and post-rainy seasons in Hua County China. Natural Resources Research, 32(5), 2023.

    Article  Google Scholar 

  • Xu, F., Li, P., Du, Q., et al. (2023). Seasonal hydrochemical characteristics, geochemical evolution, and pollution sources of Lake Sha in an arid and semiarid region of northwest China. Exposure and Health, 15, 231–244. https://doi.org/10.1007/s12403-022-00488-y

    Article  CAS  Google Scholar 

  • Zhang, Y., Xu, M., Li, X., Qi, J., Qiang, Z., Guo, J., Yu, L., & Zhao, R. (2018). Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in Kangding County, southwestern China. Water, 10(1), 80. https://doi.org/10.3390/w10010080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ali Al Maliki: conceptualization, methodology, formal analysis and investigation, software, data curation, validation, writing—original draft, writing—review and editing. U. Saravana Kumar: conceptualization, methodology, supervision, validation, writing—review and editing. Ali Hasan Falih: formal analysis and investigation, data acquisition, validation, writing—original draft, writing—review and editing. Maitham Sultan: conceptualization, methodology, data curation, writing—review and editing. Amer Al-Naemi: formal analysis and investigation, data curation, supervision, writing—review and editing. Dalal Alshamsi: formal analysis and investigation, data curation, validation, writing—review and editing. Hasan Arman: data curation, validation, writing —review and editing. Alaa Ahmed: conceptualization, methodology, data curation, writing—review and editing. Chidambaram Sabarathinam: methodology, writing—original draft, writing—review and editing. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to U. Saravana Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Maliki, A., Kumar, U.S., Falih, A.H. et al. Geochemical processes, salinity sources and utility characterization of groundwater in a semi-arid region of Iraq through geostatistical and isotopic techniques. Environ Monit Assess 196, 365 (2024). https://doi.org/10.1007/s10661-024-12533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12533-1

Keywords

Navigation