Skip to main content
Log in

Pesticides compromise health: a comparison between lizards collected within and outside an agricultural area

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reptiles are the least studied vertebrates regarding the impact of pesticides on their health, despite being good models for ecotoxicological studies given their abundance and easy handling. Salvator merianae is widely distributed in South America and often found in agricultural cultivation areas. Here, we compared the morphological, biochemical, and physiological parameters of S. merianae from an exposed area (EA) to pesticides and a reference area (RA) or control. These parameters were measured in plasma (albumin, alanine transaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, glucose, total proteins, uric acid, triglycerides, VLDL, and corticosterone) and in erythrocytes (TBARS, glutathione S-transferase, superoxide dismutase, and catalase activity). Blood samples were collected from 28 lizards (EA: three juveniles, three adult females, and three adult males; RA: nine juveniles, four females, and five males) in southern Brazil during the reproductive period. We observed a decrease in body mass, the ratio between body mass and total length and snout-vent length in juvenile lizards collected at EA. The levels of TBARS, glutathione S-transferase, triglycerides, VLDL, and uric acid were altered for juveniles in EA. When comparing the two areas, females differed in superoxide dismutase activity and total proteins, while males differed in superoxide dismutase, catalase, and glutathione S-transferase activity. This set of results shows that S. merianae, especially juveniles, suffers a negative impact when inserted in an agricultural area. The analyzed biomarkers proved suitable for monitoring these lizards and the quality of this environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [GTO], upon reasonable request.

References

  • Amaral, M. J., Carretero, M. A., Bicho, R. C., Soares, A. M., & Mann, R. M. (2012a). The use of a lacertid lizard as a model for reptile ecotoxicology studies-Part 1 field demographics and morphology. Chemosphere, 87(7), 757–764. https://doi.org/10.1016/j.chemosphere.2011.12.075

    Article  CAS  Google Scholar 

  • Amaral, M. J., Bicho, R. C., Carretero, M. A., Sanchez-Hernandez, J. C., Faustino, A. M., Soares, A. M., & Mann, R. M. (2012b). The use of a lacertid lizard as a model for reptile ecotoxicology studies: Part 2—biomarkers of exposure and toxicity among pesticide exposed lizards. Chemosphere, 87, 765–774. https://doi.org/10.1016/j.chemosphere.2012.01.048

    Article  CAS  Google Scholar 

  • Araújo, C. C., Pereira, R. L. S. W., & Flynn, M. N. (2011). Fator de condição e relação peso-comprimento de Mugil curema Valenciennes, 1836 (Pisces, Mugilidae) como potencial bioindicador de contaminação por HPAs em ambientes estuarinos. Revista Intertox De Toxicologia, Risco Ambiental E Sociedade, 4(3). https://doi.org/10.22280/revintervol4ed3.94

  • Arguedas, R., Gómez, A., Barquero, M. D., Chacón, D., Corrales, G., Hernández, S., Artacho, P., Soto-Gamboa, M., Verdugo, C., & Nespolo, R. F. (2007). Blood biochemistry reveals malnutrition in black-necked swans (Cygnus melanocoryphus) living in a conservation priority area. Comparative biochemistry and physiology. Part a, Molecular & Integrative Physiology, 146(2), 283–290. https://doi.org/10.1016/j.cbpa.2006.10.031

    Article  CAS  Google Scholar 

  • Arguedas, R., Gómez, A., Barquero, M. D., Chacón, D., Corrales, G., Hernández, S., & León, G. (2018). Effect of exposure to chlorpyrifos upon plasma cholinesterases, hematology and blood biochemistry values in Bothrops asper (Serpentes: Viperidae). Chemosphere, 205, 209–214. https://doi.org/10.1016/j.chemosphere.2018.04.111

    Article  CAS  Google Scholar 

  • Boveris, A. & Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal, 134(3), 707–716. https://doi.org/10.1042/bj1340707

  • Boyland, E., & Chasseaud, L. F. (1969). The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Advances in Enzymology and Related Areas of Molecular Biology, 1969(32), 173–219.

    Article  Google Scholar 

  • Burella, P. M., Odetti, L. M., Simoniello, M. F., & Poletta, G. L. (2018). Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicology and Environmental Safety, 161, 437–443. https://doi.org/10.1016/j.ecoenv.2018.06.006

    Article  CAS  Google Scholar 

  • Carvalho, J. E., Zena, L. A., Pereira, I. C., Bícego, K. C., & Navas, C. A. (2020). Variação sazonalda temperature corporal e do metabolismo energético. In K. C. Bícego & L. H. Gargaglioni (Eds.), Fisiologia térmica de vertebrados (pp. 275–299). Cultura Acadêmica.

    Google Scholar 

  • Coltro, M., et al. (2017). Influence of the herbicide Facet® on corticosterone levels, plasma metabolites, and antioxidant system in the liver and muscle of American bullfrog tadpoles. Water, Air, and Soil Pollution, 228, 241. https://doi.org/10.1007/s11270-017-3404-7

    Article  CAS  Google Scholar 

  • Contador-Kelsall, I., Maute, K., Story, P., Hose, G. C., & French, K. (2022). Sublethal pesticide exposure influences behaviour, but not condition in a widespread Australian lizard. Conservation Physiology, 10(1), 024. https://doi.org/10.1093/conphys/coac024

    Article  CAS  Google Scholar 

  • Contador-Kelsall, I., Maute, K., de Beer, M., et al. (2023). Individual variation within wild populations of an arid-zone lizard dictates oxidative stress levels despite exposure to sublethal pesticides. Ecotoxicology, 32, 470–486. https://doi.org/10.1007/s10646-023-02653-8

    Article  CAS  Google Scholar 

  • da Silva, O. D., da Costa, T. M., Silva-Alves, V. D., Fermiano, E. C., Seba, M. D. F. R., Nogueira, O. M., Mudrek, J. R., Barbosa, A. P. D., Gusmão, A. C., Muniz, C. C., & Carniello, M. A. (2020a). Diet and food ontogeny of the lizard Tupinambis matipu Silva et al. 2018 (Squamata: Teiidae) in Central Brazil. Research, Society and Development, 9(11), e52391110073–e52391110073.

    Article  Google Scholar 

  • de Castro, B. D., Lanés, L. E. K., Godoy, R. S., Cubas, G. K., Dabdab, A. B., Maltchik, L., & Oliveira, G. T. (2023). Glyphosate-induced biochemical changes in female Cynopoecillus sp. Inhabiting temporary wetlands. Toxicological and Environmental Chemistry, 1, 1–15. https://doi.org/10.1080/02772248.2023.2246614

    Article  CAS  Google Scholar 

  • Donadio, O. E., & Gallardo, J. M. (1984). Biología y conservación de las especies del género Tupinambis (Squamata, Sauria, Teiidae) en la República Argentina. Revista Del Museo Argentino De Ciencias Naturales Bernardino Rivadavia, 13, 117–127.

    Google Scholar 

  • Doumas, B. T., Watson, W. A., & Biggs, H. G. (1997). Albumin standards and the measurement of serum albumin with bromcresol green. Clinica Chimica Acta, 258(1), 21–30. https://doi.org/10.1016/S0009-8981(96)06447-9

    Article  CAS  Google Scholar 

  • Eisenreich, K. M., & Rowe, C. L. (2013). Experimental exposure of eggs to polybrominated diphenyl ethers BDE-47 and BDE-99 in red-eared sliders (Trachemys scripta elegans) and snapping turtles (Chelydra serpentina) and possible species-specific differences in debromination. Environmental Toxicology and Chemistry, 32(2), 393–400. https://doi.org/10.1002/etc.2061

    Article  CAS  Google Scholar 

  • Freitas, L., Paranaíba, J., Peréz, A., Machado, M., & Lima, F. (2020). Toxicity of pesticides in lizards. Human & Experimental Toxicology., 39(5), 596–604. https://doi.org/10.1177/0960327119899980

    Article  CAS  Google Scholar 

  • Gomiero, L. M., & de Souza Braga. F. M. (2003). Relação peso-comprimento e fator de condição para Cichla cf. ocellaris e Cichla monoculus (Perciformes, Cichlidae) no reservatório de Volta Grande, rio Grande-MG/SP. Acta Scientiarum: Biological Sciences, 79–86, https://doi.org/10.4025/actascibiolsci.v25i1.2119

  • González, F. H. D., & Silva, S. C. (2006). Introdução à Bioquímica Clínica Veterinária (2ª, p. 358p). Porto Alegre: UFRGS.

    Google Scholar 

  • Green, A. J. (2001). Mass/length residuals: measures of body condition or generators of spurious results? Ecology, 82(5), 1473–1483. https://doi.org/10.1890/0012-9658(2001)082[1473:MLRMOB]2.0.CO;2

    Article  Google Scholar 

  • Halán, M., Kottferová, L., Račka, K., & Lam, A. (2022). The amount of food ingested and its impact on the level of uric acid in the blood plasma of snakes. Animals (basel)., 12(21), 2959. https://doi.org/10.3390/ani12212959

    Article  Google Scholar 

  • Halliwell, B. (2012). Free radicals and antioxidants: Updating a personal view. Nutrition Reviews, 70(5), 257–265. https://doi.org/10.1111/j.1753-4887.2012.00476.x

    Article  Google Scholar 

  • Hatano, T., & Sasa, S. I. (2001). Steady-state thermodynamics of Langevin systems. Physical Review Letters, 86(16), 3463. https://doi.org/10.1103/PhysRevLett.86.3463

    Article  CAS  Google Scholar 

  • Hedge, G., & Krishnamurthy, S. V. (2014). Analysis of health status of the frog Fejervarya limnocharis (Anura: Ranidae) living in rice paddy fields of Western Ghats, using body condition factor and AChE content. Ecotoxicology and Environmental Contamination, 9(1), 69–76. https://doi.org/10.5132/eec.2014.01.009

    Article  Google Scholar 

  • Innis, C. J., Ravich, J. B., Tlusty, M. F., Hoge, M. S., Wunn, D. S., Boerner-Neville, L. B., Merigo, C., & Weber III, E.S. (2009). Hematologic and plasma biochemical findings in cold-stunned Kemp’s ridley turtles: 176 cases (2001–2005). Journal of the American Veterinary Medical Association, 235 (4). https://doi.org/10.2460/javma.235.4.426

  • IUCN- International Union for Conservation of Nature and Natural Resources Red List of threatened species (2020) Lizards. The Red List. https://www.iucnredlist.org/search?query=lizards&searchType=species

  • Jakob, E. M., Marshall, S. D., & Uetz, G. W. (1996). Estimating fitness: a comparison of body condition indices. Oikos, 77(1), 61–67. https://doi.org/10.2307/3545585

    Article  Google Scholar 

  • Kanbur, M., Liman, B. C., Eraslan, G., & Altinordulu, S. (2008). Effects of cypermethrin, propetamphos, and combination involving cypermethrin and propetamphos on lipid peroxidation in mice. Environmental Toxicology, 23(4), 473–479. https://doi.org/10.1002/tox.20360

    Article  CAS  Google Scholar 

  • Kiefer, M. C., & Sazima, I. (2002). Diet of juvenile tegu lizard Tupinambis merianae (Teiidae) in southeastern Brazil. Amphibia-Reptilia, 23, 105–108.

    Google Scholar 

  • Le Cren, C. D. (1951). The length-weight relationship and seasonal cycle in Gonad weight and condition in Perch. Perca fluviatilis. Journal of Animal Ecology, 20, 201–219. https://doi.org/10.2307/1540

  • Lima, E. S., & Abdalla, D. S. P. (2001). Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, 37(3), 293–303.

    CAS  Google Scholar 

  • Lucas, L. D., & French, S. S. (2012). Stress-induced tradeoffs in a free-living lizard across a variable landscape: consequences for individuals and populations. PLoS ONE, 7(11), e49895. https://doi.org/10.1371/journal.pone.0049895

    Article  CAS  Google Scholar 

  • Marins, A. T., Cerezer, C., Leitemperger, J. W., Severo, E. S., Costa, M. D., Fontoura, D. O., Nunes, M. E. M., Ribeiro, L. C., Zanella, R., & Loro, V. L. (2021). A mixture of pesticides at environmental concentrations induces oxidative stress and cholinergic effects in the neotropical fish Rhamdia quelen. Ecotoxicology, 30(1), 164–174. https://doi.org/10.1007/s10646-020-02300-6

    Article  CAS  Google Scholar 

  • Memon, A. S. (2020). Hepatotoxic effects on subchronic exposure to chlorpyrifos insecticide in Pigeon (Columba livia domestica). Pure and Applied Biology, 9(1), 172–179. https://doi.org/10.19045/bspab.2020.90021

    Article  CAS  Google Scholar 

  • Mestre, A. P., Amavet, P. S., Vanzetti, A. I., Moleón, M. S., ParachúMarcó, M. V., Poletta, G. L., & Siroski, P. A. (2019). Effects of cypermethrin (pyrethroid), glyphosate and chlorpyrifos (organophosphorus) on the endocrine and immune system of Salvator merianae (Argentine tegu). Ecotoxicology and Environmental Safety, 169, 61–67. https://doi.org/10.1016/j.ecoenv.2018.10.057

    Article  CAS  Google Scholar 

  • Meylan, S., Haussy, C., & Voituron, Y. (2010). Physiological actions of corticosterone and its modulation by an immune challenge in reptiles. General and Comparative Endocrinology, 169(2), 158–166. https://doi.org/10.1016/j.ygcen.2010.08.002

    Article  CAS  Google Scholar 

  • Mingo, V., Lötters, S., & Wagner, N. (2017). The impact of land use intensity and associated pesticide applications on fitness and enzymatic activity in reptiles-a field study. The Science of the Total Environment, 590–591, 114–124. https://doi.org/10.1016/j.scitotenv.2017.02.178

    Article  CAS  Google Scholar 

  • Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters, 12, 75–92. https://doi.org/10.1111/j.1461-0248.2008.01258.x

    Article  Google Scholar 

  • Odetti, L. M., et al. (2023). How the exposure to environmentally relevant pesticide formulations affects the expression of stress response genes and its relation to oxidative damage and genotoxicity in Caiman latirostris. Environmental Toxicology and Pharmacology, 97, 104014. https://doi.org/10.1016/j.etap.2022.104014

    Article  CAS  Google Scholar 

  • Oliveira, A. S. (2015). Uso da radiotelemetria no monitoramento de lagartos: estudo de caso em Salvator merianae. Monografia (Especialização), Universidade Federal do Rio Grande do Sul. https://lume.ufrgs.br/bitstream/handle/10183/141993/000987106.pdf?sequence=1&isAllowed=y

  • Oliveira, M. R., et al. (2018). Seasonal and sexual variation of the intermediate metabolism and body condition indexes in the lizard Tropidurus catalanensis (Gudynas and Skuk, 1983) (Squamata: Tropiduridae). South American Journal of Herpetology, 13, 85–95. https://doi.org/10.2994/SAJH-D-17-00073.1

    Article  Google Scholar 

  • Oliveira, M. R., et al. (2021). Evaluation of the seasonal variation of parameters of oxidative status of Tropidurus catalanensis Gudynas and Skuk, 1983. South American Journal of Herpetology, 19, 12–21. https://doi.org/10.2994/SAJH-D-18-00048.1

    Article  Google Scholar 

  • Paz, M. M., García, N. E., Semhan, R. V., et al. (2019). (2019) Study of lipid reserves in Liolaemus koslowskyi (Squamata: Liolaemidae): Reproductive and ecological implications. Journal of Comparative Physiology B, 189, 595–609. https://doi.org/10.1007/s00360-019-01226-8

    Article  Google Scholar 

  • Poletta, G. L., Simoniello, M. F., & Mudry, M. D. (2016). Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 179, 29–36. https://doi.org/10.1016/j.cbpc.2015.08.003

    Article  CAS  Google Scholar 

  • Puerta, M., Abelenda, M., Salvador, A., Martin, J., Lopez, P., & Veiga, J. P. (1996). Haematology and plasma chemistry of male lizards, Psammodromus algirus. Effects of Testosterone Treatment Comparative Haematology International, 6, 102–106. https://doi.org/10.1007/BF00426050

    Article  CAS  Google Scholar 

  • Schaumburg, L. G., et al. (2016). Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (S. merianae) embryos. Pesticide Biochemistry and Physiology, 130, 71–78. https://doi.org/10.1016/j.pestbp.2015.11.009

    Article  CAS  Google Scholar 

  • Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size residuals: Validating body condition indices. Ecology, 86(1), 155–163. https://doi.org/10.1890/04-0232

    Article  Google Scholar 

  • Settle, T., & Klandorf, H. (2014). The role of uric acid as an antioxidant in selected neurodegenerative disease pathogenesis: a short review. Brain Disord Ther, 3, 129. https://doi.org/10.4172/2168-975X.1000129

    Article  Google Scholar 

  • Silva, J. M., Navoni, J. A., & Freire, E. M. X. (2020b). Lizards as model organisms to evaluate environmental contamination and biomonitoring. Environmental Monitoring and Assessment, 192, 454. https://doi.org/10.1007/s10661-020-08435-7

    Article  CAS  Google Scholar 

  • Silvestre, A. M., Dominguez, M. A. R., Mateo, J. A., et al. (2004). Comparative haematology and chemistry of endangered lizards (Gallotia species) in the Canary Islands. Veterinary Record., 155, 266–269. https://doi.org/10.1136/vr.155.9.266

    Article  Google Scholar 

  • Simbula, G., Vignoli, L., & Carretero, M. A. (2021). Kaliontzopoulou A (2021) Fluctuating asymmetry as biomarker of pesticides exposure in the Italian wall lizards (Podarcis siculus). Zoology, 147, Article 125928. https://doi.org/10.1016/j.zool.2021.125928

    Article  Google Scholar 

  • Spadotto, C. A. (2006). Abordagem interdisciplinar na avaliação ambiental de agrotóxicos. Revista Núcleo de Pesquisa Interdisciplinar. http://www.fan.edu.br/npi_2.php. 9p. Acessado em 10 de maio de 2018

  • Speakman John, R. (2008). The physiological costs of reproduction in small mammals. Philosophical Transactions of the Royal Society, B363375–398. https://doi.org/10.1098/rstb.2007.2145

  • Stahl, S. J. (2003). Diseases of the reptile pancreas. Veterinary Clinics of North America: Exotic Animal Practice, 6(1), 191–212. https://doi.org/10.1016/s1094-9194(02)00054-3

    Article  Google Scholar 

  • Sykes, J. M., & Klaphake, E. (2015). Reptile hematology. Clinics in Laboratory Medicine, 35(3), 661–680.

    Article  Google Scholar 

  • Thrall, M. A., Weiser, G., Allison, R. W., & Campbell, T. W. (2015). Hematologia e Bioquímica Clínica Veterinária (2ª, p. 688p). São Paulo: Roca.

    Google Scholar 

  • Viana, D. C., da Silva, K. B., dos Santos, A. C., & Oliveira, A. S. (2014). Perfil bioquímico em serpentes - revisão de literatura. Revista Campo Digital, 9(1). https://revista.grupointegrado.br/revista/index.php/campodigital/article/view/1719

  • Vieira, R. C., de Oliveira, A. S., Fagundes, N., Jr., & Verrastro, L. (2015). Approaches to capturing the Black and White Tegu S merianae (Squamata: Teiidae). Zoologia (curitiba. Online), 32, 317–320. https://doi.org/10.1590/S1984-46702015000400007

    Article  Google Scholar 

  • Wang, Z., et al. (2021). Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus). Environmental Pollution, 269, 116139. https://doi.org/10.1016/j.envpol.2020.116139

    Article  CAS  Google Scholar 

  • Wilkens, A. L. L., Valgas, A. A. N., & Oliveira, G. T. (2019). Effects of ecologically relevant concentrations of Boral® 500 SC, Glifosato® Biocarb, and a blend of both herbicides on markers of metabolism, stress, and nutritional condition factors in bullfrog tadpoles. Environmental Science and Pollution Research International, 26(23), 23242–23256. https://doi.org/10.1007/s11356-019-05533-z

    Article  CAS  Google Scholar 

  • Winck, G. R. (2007). História natural de Tupinambis merianae (Squamata, Teiidae) na Estação Ecológica do Taim, extremo sul do Brasil. Universidade Federal de Santa Maria.

    Google Scholar 

  • Zena, L. A., Dillon, D., Hunt, K. E., Navas, C. A., Bícego, K. C., & Buck, C. L. (2019). Seasonal changes in plasma concentrations of the thyroid, glucocorticoid and reproductive hormones in the tegu lizard Salvator merianae. General and Comparative Endocrinology, 273, 134–143. https://doi.org/10.1016/j.ygcen.2018.06.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Council for Scientific and Technological Development-CNPq for the scholarship granted to the first author and Fundação Empresa Escola de Engenharia (FEEng) for the funds to purchase kits for analyses.

Funding

Partial financial support was received from the National Council for Scientific and Technological Development-CNPq and the Fundação Empresa Escola de Engenharia (FEEng).

Author information

Authors and Affiliations

Authors

Contributions

Jéssica Fonseca Araujo: conceptualization, data curation, formal analysis, investigation, writing the manuscript draft. Artur Antunes Navarro Valgas: collection, data curation, review of the manuscript. Diogo Reis de Oliveira: collection, review of the manuscript. Laura Verrastro: conceptualization, formal analysis, methodology, supervision, reviewing, and editing the manuscript. Guendalina Turcato Oliveira: conceptualization, formal analysis, methodology, supervision, writing, reviewing, and editing the manuscript.

Corresponding author

Correspondence to Guendalina Turcato Oliveira.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors. The project was carried out after obtaining licenses for handling live animals and blood collection by the Chico Mendes Institute for Biodiversity Conservation (ICMBio), under registration 66925–1, and by the Ethics Commission for the use of Animals at the PUCRS. The access record of genetic heritage was obtained from the National System for the Management of Genetic Heritage and Associated Traditional Knowledge (SISGEN: A4036FB).

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, J.F., Valgas, A.A.N., de Oliveira, D.R. et al. Pesticides compromise health: a comparison between lizards collected within and outside an agricultural area. Environ Monit Assess 196, 334 (2024). https://doi.org/10.1007/s10661-024-12498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12498-1

Keywords

Navigation