Skip to main content
Log in

Availability of the current and future water resources in Equatorial Central Africa: case of the Nyong forest catchment in Cameroon

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To anticipate disasters (drought, floods, etc.) caused by environmental forcing and reduce their impacts on its fragile economy, sub-Saharan Africa needs a good knowledge of the availability of current water resources and reliable hydroclimatic forecasts. This study has an objective to quantify the availability of water resources in the Nyong basin and predict its future evolution (2024–2050). For this, the SWAT (Soil and Water Assessment Tool) model was used. The performance of this model is satisfactory in calibration (2001–2005) and validation (2006–2010), with R2, NSE, and KGE greater than 0.64. Biases of − 11.8% and − 13.9% in calibration and validation also attest to this good performance. In the investigated basin, infiltration (GW_RCH), evapotranspiration (ETP), surface runoff (SURQ), and water yield (WYLD) are greater in the East, probably due to more abundant rainfall in this part. The flows and sediment load (SED) are greater in the middle zone and in the Southwest of the basin, certainly because of the flat topography of this part, which corresponds to the valley floor. Two climate models (CCCma and REMO) predict a decline in water resources in this basin, and two others (HIRHAM5 and RCA4) are the opposite. However, based on a statistical study carried out over the historical period (2001–2005), the CCCma model seems the most reliable. It forecasts a drop in precipitation and runoff, which do not exceed − 19% and − 18%, respectively, whatever the emission scenario (RCP4.5 or RCP8.5). Climate variability (CV) is the only forcing whose impact is visible in the dynamics of current and future flows, due to the modest current (increase of + 102 km2 in builds and roads) and future (increase of + 114 km2 in builds and roads) changes observed in the evolution of land use and land cover (LULC). The results of this study could contribute to improving water resource management in the basin studied and the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’connell, P. E., & Rasmussen, J. (1986). An introduction to the European Hydrological System—Système Hydrologique Europeen SHE 2, Structure of a physically based distributed modelling system. Journal of Hydrology, 87, 61–77. https://doi.org/10.1016/0022-1694(86)90114-9

    Article  ADS  Google Scholar 

  • Akoko, G., Kato, T., & Tu, L. H. (2020). Evaluation of irrigation water resources availability and climate change impacts – a case study of mwea irrigation scheme Kenya. Water, 12(9), 2330. https://doi.org/10.3390/w12092330

    Article  Google Scholar 

  • Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., & Neitsch, S.L. (2012). Soil and water assessment tool: Input/output documentation. Version 2012, TR-439, Texas Water Resources Institute, College Station, USA

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34, 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  ADS  CAS  Google Scholar 

  • Awotwi, A., Annor, T., Anornu, G. K., Quaye-Ballard, J. A., Agyekum, J., Ampadu, B., Nti, I. K., Gyampo, M. A., & Boakye, E. (2021). Climate change impact on streamflow in a tropical basin of Ghana, West Africa. Journal of Hydrology: Regional Studies, 34, 100805. https://doi.org/10.1016/j.ejrh.2021.100805

    Article  Google Scholar 

  • Basheer, A., Lü, H., Omer, A., Ali, A., & Abdelgader, A. (2015). Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrol. Earth Syst. Sci. Discuss., 12, 10157–10195. https://doi.org/10.5194/hessd-12-10157-2015

    Article  ADS  Google Scholar 

  • Bennour, A., Jia, L., Menenti, M., Zheng, C., Zeng, Y., Barnieh, B., & Jiang, M. (2023). Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. Journal of Hydrology: Regional Studies, 47, 101370.

    Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43–69. https://doi.org/10.1080/02626667909491834

    Article  Google Scholar 

  • Beyene, T., Lettenmaier, D. P., & Kabat, P. (2010). Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Climatic Change, 100, 433–461. https://doi.org/10.1007/s10584-009-9693-0

    Article  ADS  Google Scholar 

  • Bigot, S., Philippon, N., Gond, V., Moron, V., Pokam, W., Bayol, N., Boyemba, F., Kahindo, B., Samba, G., Ngomanda, A., Gapia, M., Yongo, O. D., Laurent, J.-P., Gourlet-Fleury, S., Doumengé, C., Forni, E., Camberlin, P., Martiny, N., Dubreuil, V. & Brou, T. (2016). Etat actuel des réseaux de mesure éco-climatiques en Afrique centrale : Les ambitions du projet de recherche internationale FORGREENE. XXIXe Colloque de l’Association Internationale de Climatologie, Lausanne - Besançon, Suisse

  • Bodian, A., Dezetter, A., & Dacosta, A. (2012). Apport de la modélisation pluie-débit pour la connaissance de la ressource en eau : Application au haut Bassin du Fleuve Sénégal. Climatologie, 9, 109–125. https://doi.org/10.4267/climatologie.223

    Article  Google Scholar 

  • Chang, H. J., & Jung, I. W. (2010). Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology, 388(3), 186–207. https://doi.org/10.1016/j.jhydrol.2010.04.040

    Article  ADS  Google Scholar 

  • Chen, H., Xu, C.-Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434, 36–45. https://doi.org/10.1016/j.jhydrol.2012.02.040

    Article  ADS  Google Scholar 

  • Dibaba, W.T., Demissie, T.A., & Miegel, K. (2020). Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa catchment. Water 12 (1801). https://doi.org/10.3390/w12061801

  • Dibaba, W. T., Miegel, K., & Demissie, T. A. (2019). Evaluation of the CORDEX regional climate models performance in simulating climate conditions of two catchments in Upper Blue Nile Basin. Dynamics of Atmospheres and Oceans, 87, 101104. https://doi.org/10.1016/j.dynatmoce.2019.101104

    Article  Google Scholar 

  • Dosdogru, F., Kalin, L., Wang, R., & Yen, H. (2020). Potential impacts of land use/cover and climate changes on ecologically relevant flows. Journal of Hydrology, 584, 124654. https://doi.org/10.1016/j.jhydrol.2020.124654

    Article  Google Scholar 

  • Duku, C., Zwart, S. J., & Hein, L. (2018). Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE, 13(3), e0192642. https://doi.org/10.1371/journal.pone.0192642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebodé, V. B. (2023). Impact of climate and anthropogenic changes on current and future variability in flows in the Nyong River Basin (equatorial central Africa). Journal of Hydroinformatics, 25(2), 369. https://doi.org/10.2166/hydro.2023.116

    Article  Google Scholar 

  • Ebodé, V. B. (2022). Impact of rainfall variability and land-use changes on river discharge in Sanaga catchment (forest–savannah transition zone in Central Africa). Hydrology Research, 53, 7. https://doi.org/10.2166/nh.2022.046

    Article  Google Scholar 

  • Ebodé, V. B., Mahé, G., Dzana, J. G., & Amougou, J. A. (2020). Anthropization and climate change: Impact on the discharges of forest watersheds in Central Africa. Water, 12, 2718. https://doi.org/10.3390/w12102718

    Article  Google Scholar 

  • Ebodé, V. B., Dzana, J. G., Nkiaka, E., Nka, N. B., Braun, J. J., & Riotte, J. (2022). Effects of climate and anthropogenic changes on current and future variability in flows in the So’o River Basin (south of Cameroon). Hydrology Research, 53(9), 1203–1220. https://doi.org/10.2166/nh.2022.047

    Article  Google Scholar 

  • Elaji, A., & Ji, W. (2020). Urban runoff simulation: How do land use/cover change patterning and geospatial data quality impact model outcome? Water, 12, 2715. https://doi.org/10.3390/w12102715

    Article  Google Scholar 

  • Faramarzi, M., Abblaspour, K. C., Schulin, R., & Yang, H. (2009). Modelling blue and green water resources availability in Iran. Hydrological Processes, 23, 486–501. https://doi.org/10.1002/hyp.7160

    Article  ADS  Google Scholar 

  • Gadissa, T., Nyadawa, M., Behulu, F., & Mutua, B. (2018). The effect of climate change on loss of lake volume: Case of sedimentation in Central Rift Valley basin, Ethiopia. Hydrology, 5(4), 67. https://doi.org/10.3390/hydrology5040067

    Article  Google Scholar 

  • Gbohoui, P., Paturel, J. E., Tazen, F., Mounirou, L., Yonaba, R., Karambiri, H., & Yacouba, H. (2021). Impacts of climate and environmental changes on water resources: A multi-scale study based on Nakanb´e nested watersheds in West African Sahel. Journal of Hydrology: Regional Studies, 35, 100828. https://doi.org/10.1016/j.ejrh.2021.100828

    Article  Google Scholar 

  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015

    Article  Google Scholar 

  • Kingston, D. G., & Taylor, R. G. (2010). Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrology and Earth System Sciences, 14, 1297–1308. https://doi.org/10.5194/hess-14-1297-2010

    Article  ADS  Google Scholar 

  • Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23(10), 2739–2758.

    Article  ADS  Google Scholar 

  • Koffi, B., Brou, A. L. Kouadio, K., Ebodé, V. B., N’guessan, K., Yangouliba, Y., Yaya, K. Brou, D., & Kouassi, K. (2023). Impact of climate and land use/land cover change on Lobo reservoir inflow, West-Central of Côte d’Ivoire. Journal of Hydrology: Regional studies 47(101417). https://doi.org/10.1016/j.ejrh.2023.101417

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459

    Article  Google Scholar 

  • Mahé, G., Lerique, J., & Olivry, J. C. (1990). L’Ogooué au Gabon. Reconstitution des débits manquants et mise en évidence de variations climatiques à l’équateur. Hydrologie Continentale, 5, 105–124.

    Google Scholar 

  • Mendez, M., & Calvo-Valverde, L. (2016). Development of the HBV-TEC hydrological model. Procedia Engineering, 154, 1116–1123. https://doi.org/10.1016/j.proeng.2016.07.521

    Article  Google Scholar 

  • Moriasi, D. J., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50, 885–900.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool: Theoretical documentation (p. 494). USDA, Agricultural Research Service, Blackland Research Center, Texas A&M University.

    Google Scholar 

  • Notter, B., Hurni, H., Wiesmann, U., & Ngana, J. O. (2013). Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin. Physics and Chemistry of the Earth, Parts a/b/c, 61–62, 1–11. https://doi.org/10.1016/j.pce.2012.08.017

    Article  ADS  Google Scholar 

  • Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., & Arnold, J. G. (2016). CMhyd user manual. Available online http://swat.tamu.edu/software/cmhyd/. Accessed 4 Jan 2021

  • Reshmidevi, T., Kumar, D. N., Mehrotra, R., & Sharma, A. (2018). Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology, 556, 1192–1204.

    Article  ADS  Google Scholar 

  • Ruelland, D., Ardoin-Bardin, S., Collet, L., & Roucou, P. (2012). Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change. Journal of Hydrology, 424–425(6), 207–216. https://doi.org/10.1016/j.jhydrol.2012.01.002

    Article  ADS  Google Scholar 

  • Sidibe, M., Dieppois, B., Eden, J., Mahé, G., Paturel, J. E., Amoussou, E., Anifowose, B., & Lawler, D. (2019). Interannual to multi-decadal streamflow variability in West and Central Africa: Interactions with catchment properties and large-scale climate variability. Global and Planetary Change, 177, 141–156. https://doi.org/10.1016/j.gloplacha.2019.04.003

    Article  ADS  Google Scholar 

  • Sighomnou, D. (2004). Analyse et redéfinition des régimes climatiques et hydrologiques du Cameroun: Perspectives d’évolution des ressources en eau (p. 290). Université de Yaoundé I.

    Google Scholar 

  • Taleb, R. B., Naimi, M., Chikhaoui, M., Raclot, D., & Sabir, M. (2019). Evaluation Des Performances Du Modèle Agrohydrologique SWAT à Reproduire Le Fonctionnement Hydrologique Du Bassin Versant Nakhla (Rif occidental, Maroc). European Scientific Journal, 15, 311–333. https://doi.org/10.19044/esj.2019.v15n5p311

    Article  Google Scholar 

  • Tegegne, G., Park, D. K., & Kim, Y. O. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66. https://doi.org/10.1016/j.ejrh.2017.10.002

    Article  Google Scholar 

  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

    Article  ADS  Google Scholar 

  • Wagena, M. B., Sommerlot, A., Chikhaoui, M., Raclot, D., & Sabir, M. (2016). Climate change in the blue Nile basin Ethiopia: Implications for water resources and sediment transport. Climatic Change, 139, 229–243. https://doi.org/10.1007/s10584-016-1785-z

    Article  Google Scholar 

  • Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., & Yao, A. (2012). Multi-site calibration validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrology and Earth System Sciences, 16, 4621–4632. https://doi.org/10.5194/hess-16-4621-2012

    Article  ADS  Google Scholar 

  • Yang, C., Wu, G., Chen, J., Li, Q., Ding, K., Wang, G., & Zhang, C. (2019). Simulating and forecasting spatio-temporal characteristic of land-use/cover change with numerical model and remote sensing: A case study in Fuxian Lake Basin, China. European Journal of Remote Sensing, 52(1), 374–384. https://doi.org/10.1080/22797254.2019.1611387

    Article  Google Scholar 

  • Yin, Z., Feng, Q., Yang, L., Wen, X., Si, J., & Zou, S. (2017). Long-term quantification of climate and land cover change impacts on streamflow in an alpine river catchment, northwestern China. Sustainability, 9(7), 1278. https://doi.org/10.3390/su9071278

  • Yira, Y., Diekkrüger, D., Steup, D., & Bossa, Y. A. (2017). Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrology and Earth System Sciences, 21, 2143–2161. https://doi.org/10.5194/hess-21-2143-2017

    Article  ADS  Google Scholar 

  • Yonaba, R., Biaou, A., Koïta, M., Tazen, F., Adjadi Mounirou, L., Zouré, C., Queloz, P., Karambiri, H., Yacouba, H. (2021). A dynamic land use/land cover input helps in picturing the Sahelian paradox: Assessing variability and attribution of changes in surface runoff in a Sahelian watershed. Science of the Total Environment 177(792). https://doi.org/10.1016/j.scitotenv.2020.143792

  • Yonaba, R., Adjadi Mounirou, L., Tazen, F., Koïta, M., Biaou, A., Zouré, C., Queloz, P., Karambiri, H., Yacouba, H. (2023). Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. Les Comptes Rendus. Géoscience — Sciences de la Planète 355(2023). https://doi.org/10.5802/crgeos.179

  • Zhang, B., Shrestha, N. K., Daggupati, P., Rudra, R., Shukla, R., Kaur, B., & Hou, J. (2018). Quantifying the impacts of climate change on streamflow dynamics of two major rivers of the Northern Lake Erie Basin in Canada. Sustainability, 10(8), 2897. https://doi.org/10.3390/su10082897

    Article  Google Scholar 

  • Zhang, H., & Huang, G. H. (2013). Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation. Climate Dynamics, 40(3–4), 805–821. https://doi.org/10.1016/j.jhydrol.2014.06.037

    Article  ADS  Google Scholar 

  • Zhang, H., Wang, B., Liu, D. L., Zhang, M., Fenga, P., Cheng, L., Yu, Q., & Eamus, D. (2019). Impacts of future climate change on water resource availability of eastern Australia: A case study of the Manning River basin. Journal of Hydrology, 573, 49–59. https://doi.org/10.1016/j.jhydrol.2019.03.067

    Article  ADS  Google Scholar 

  • Zhang, Y., Tang, C., Ye, A., Zheng, T., Nie, X., Tu, A., Zhu, H., & Zhang, H. (2020). Impacts of climate and land-use change on blue and green water: A case study of the upper Ganjiang River Basin, China. Water 12(2661). https://doi.org/10.3390/w12102661

  • Zhao, Z., Wang, H., Bai, Q., Wu, Y., & Wang, C. (2020). Quantitative analysis of the effects of natural and human factors on a hydrological system in Zhangweinan Canal Basin. Water, 12, 1864. https://doi.org/10.3390/w12071864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Valentin Brice Ebodé: Software, Validation, Methodology, Investigation, Resources, Data Curation, Writing—Original Draft, Visualization; Jean Yannick Ngono Onana: Conceptualization, Project administration, Supervision, Methodology, Software, Conceptualization, Methodology, Writing—Review & Editing; Jean Guy Dzana.: Conceptualization, Resources, Writing—Review & Editing; Joseph Armathé Amougou: Writing—Review & Editing; Romain Armand Soleil Batha.: Writing—Review & Editing; Thomas Boyomo: Writing—Review & Editing; Gaston Evarice Ndjela Mbeih.: Writing—Review & Editing.

Corresponding author

Correspondence to Valentin Brice Ebodé.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors.”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebodé, V.B., Onana, J.Y.N., Dzana, J.G. et al. Availability of the current and future water resources in Equatorial Central Africa: case of the Nyong forest catchment in Cameroon. Environ Monit Assess 196, 298 (2024). https://doi.org/10.1007/s10661-024-12471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12471-y

Keywords

Navigation