Skip to main content

Advertisement

Log in

Assessment of spatiotemporal variability of ultraviolet index (UVI) over Kerala, India, using satellite remote sensing (OMI/AURA) data

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The spatial and temporal dynamics of daily ultraviolet index (UVI) for a period of 18 years (2004–2022) over the Indian state of Kerala were statistically characterised in the study. The UVI measurements used for the study were derived from the ultraviolet-B (UVB) irradiance measured by the Ozone Monitoring Instrument (OMI) of the AURA satellite and classified into different severity levels for analysis. Basic statistics of daily, monthly and seasonal UVI as well as Mann-Kendall (MK) statistical trend characteristics and the rate of change of daily UVI using Theil-Sen’s slope test were also evaluated. A higher variability of UVI characteristics was observed in the Kerala region, and more than 79% of the measurements fell into the categories of very high and extreme UVI values, which suggests the need of implementation of appropriate measures to reduce health risks. Although the UVI measured during the study period shows a slight decrease, most of the data show a seasonal variation with undulating low and peak values. Higher UVI are observed during the months of March, April and September. The region also has higher UVI during the southwest monsoon (SWM) and summer seasons. Although Kerala region as a single whole unit, UVI show a non-significant decreasing trend (-0.83), the MK test revealed the increasing and decreasing trends of UVI ranging from -1.96 to 0.41 facilitated the delineation of areas (domains) where UVI are increasing or decreasing. The domain of UVI increase occupies the central and southern (S) parts, and the domains of decrease cover the northern (N) and S parts of the Kerala region. The rate of change of daily UVI in domain of increase and decrease shows an average rate of 0.34 × 10−5 day−1 and −2 × 10−5 day−1, respectively. The parameters (rainfall, air temperature, cloud optical depth (COD) and solar zenith angle (SZA)) that affect the strength of UV rays reaching the surface indicate that a cloud-free atmosphere or low thickness clouds prevails in the Kerala region. Overall, the study results indicate the need for regular monitoring of UVI in the study area and also suggest appropriate campaigns to disseminate information and precautions for prolonged UVI exposure to reduce the adverse health effects, since the study area has a high population density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the datasets used in this research are collected from open source. UV index data of OMI/AURA (1° × 1°) was collected from NASA’s Earth Data portal GES DISC.

References

  • Addas, A., Ragab, M., Maghrabi, A., Abo-Dahab, S. M., & El-Nobi, E. F. (2021). UV index for public health awareness based on OMI/NASA satellite data at King Abdulaziz University, Saudi Arabia. Advances in Mathematical Physics, 2021, 1–11.

    Article  MathSciNet  Google Scholar 

  • Agarwal, S., Suchithra, A. S., & Singh, S. P. (2021). Analysis and interpretation of rainfall trend using Mann-Kendall’s and Sen’s slope method. Indian Journal of Ecology, 48(2), 453–457.

    Google Scholar 

  • AGNIR. (2017). Ultraviolet radiation, vitamin D and health (report of the independent advisory group on non-ionising radiation). Public Health England https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/620184/UV_Radiation_Vitamin_D_Health.Pdf. Accessed 05.02.2023.

  • Ahmad, S. I. (Ed.). (2017). Ultraviolet light in human health, diseases and environment (Vol. 996). Springer.

    Google Scholar 

  • Ahmad, S. P., Levelt, P. F., Bhartia, P. K., Hilsenrath, E., Leppelmeier, G. W., & Johnson, J. E. (2003). Atmospheric products from the ozone monitoring instrument (OMI). In Earth observing systems VIII (Vol. 5151, pp. 619-630). SPIE.

    Google Scholar 

  • Allaart, M., van Weele, M., Fortuin, P., & Kelder, H. (2004). An empirical model to predict the UV-index based on solar zenith angles and total ozone. Meteorological Applications, 11(1), 59–65.

    Article  ADS  Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Rossi, M. J., & Troe, J. (1997). Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical Reference Data, 26(3), 521–1011.

    Article  CAS  ADS  Google Scholar 

  • Bais, A. F., Kazantzidis, A., Kazadzis, S., Balis, D. S., Zerefos, C. S., & Meleti, C. (2005). Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements. Atmospheric Environment, 39(6), 1093–1102.

    Article  CAS  ADS  Google Scholar 

  • Barnes, P. W., Williamson, C. E., Lucas, R. M., Robinson, S. A., Madronich, S., Paul, N. D., et al. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2(7), 569–579.

    Article  Google Scholar 

  • Beck, N., Balanay, J. A. G., & Johnson, T. (2018). Assessment of occupational exposure to heat stress and solar ultraviolet radiation among groundskeepers in an eastern North Carolina university setting. Journal of Occupational and Environmental Hygiene, 15(2), 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard, G. H., Neale, R. E., Barnes, P. W., Neale, P. J., Zepp, R. G., Wilson, S. R., et al. (2020). Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochemical & Photobiological Sciences, 19(5), 542–584.

    Article  CAS  Google Scholar 

  • Bhattacharya, R., Pal, S., Bhoumick, A., & Barman, P. (2012). Annual variability and distribution of ultraviolet index over India using TEMIS data. International Journal on Engineering, Science and Technology, 4, 4577.

    Google Scholar 

  • Blumthaler, M. (2018). UV monitoring for public health. International Journal of Environmental Research and Public Health, 15(8), 1723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchner, K., & Rivasi, M. (2020). The international commission on non-ionizing radiation protection: Conflicts of interest, corporate capture and the push for 5G. https://ICNIRP-report-FINAL-19-JUNE-2020.pdf. Accessed 16.02.2023.

  • Bureau of Meteorology (BoM), Australian Government. (2023). Ultraviolet (UV) radiation / ozone frequently asked questions. http://www.bom.gov.au/uv/faq.shtml#. Accessed 09.03.2023.

  • Burrows, W. R. (1997). CART regression models for predicting UV radiation at the ground in the presence of cloud and other environmental factors. Journal of Applied Meteorology and Climatology, 36(5), 531–544.

    Article  Google Scholar 

  • Calbó, J., Pages, D., & González, J. A. (2005). Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics, 43(2), RG2002.

  • Corrêa, M. P., Dubuisson, P., & Plana-Fattori, A. (2003). An overview of the ultraviolet index and the skin cancer cases in Brazil. Photochemistry and Photobiology, 78(1), 49–54.

    Article  PubMed  Google Scholar 

  • De Jager, T. L., Cockrell, A. E., & Du Plessis, S. S. (2017). Ultraviolet light induced generation of reactive oxygen species. In Ultraviolet Light in Human Health, Diseases and Environment (pp. 15–23).

    Chapter  Google Scholar 

  • de Souza, A., Aristone, F., Fernandes, W. A., Oliveira, A. P. G., Olaofe, Z., Abreu, M. C., et al. (2020). Analysis of ozone concentrations using probability distributions. Ozone: Science & Engineering, 42(6), 539–550.

    Article  ADS  Google Scholar 

  • Elemo, E. O., Ogobor, E. A., Mangete, O. E., Ayantunji, B. G., Doherty, K. B., Sani, H. A., et al. (2021). Ultraviolet radiation index over Abuja, Nigeria. Open Access Library Journal, 8(9), 1–17.

    Google Scholar 

  • El-Nouby Adam, M. (2011). Effect of the atmosphere on UVB radiation reaching the earth’s surface: Dependence on solar zenith angle. Atmospheric and Oceanic Science Letters, 4(3), 139–145.

    Article  Google Scholar 

  • ENVIS Hub, Kerala. (2022). Environmental Information System (ENVIS) Hub Kerala. Kerala State Council for Science Technology and Environment. http://www.kerenvis.nic.in/Database/CLIMATE_829.aspx. Accessed 01.10.2022.

  • EPA (Environmental Protection Agency). (2004). A guide to the UVindex. Air and Radiation, 6205J, EPA430-F-04-020.

    Google Scholar 

  • Eskes, H. J., Velthoven, P. V., Valks, P. J. M., & Kelder, H. M. (2003). Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 129(590), 1663–1681.

    Article  ADS  Google Scholar 

  • Fioletov, V., Kerr, J. B., & Fergusson, A. (2010). The UV index: Definition, distribution and factors affecting it. Canadian Journal of Public Health, 101, I5–I9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrigan, H., Ifantides, C., Prashanthi, G. S., & Das, A. V. (2021). Biogeographical and altitudinal distribution of cataract: A nine-year experience using electronic medical record-driven big data analytics in India. Ophthalmic Epidemiology, 28(5), 392–399.

    Article  PubMed  Google Scholar 

  • Gies, P., van Deventer, E., Green, A. C., Sinclair, C., & Tinker, R. (2018). Review of the global solar UV index 2015 workshop report. Health Physics, 114(1), 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Heckman, C. J., Liang, K., & Riley, M. (2019). Awareness, understanding, use, and impact of the UV index: A systematic review of over two decades of international research. Preventive Medicine, 123, 71–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman, J. R. (2010). Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. Journal of Geophysical Research: Atmospheres, 115(D4).

  • Holick, M. F. (2016). Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Research, 36(3), 1345–1356.

    CAS  PubMed  Google Scholar 

  • Hunt, K. M., & Menon, A. (2020). The 2018 Kerala floods: A climate change perspective. Climate Dynamics, 54(3-4), 2433–2446.

    Article  ADS  Google Scholar 

  • IMD 2010. Climate profile of India. Met Monograph No. Environment Meteorology-01/2010. India Meteorological Department, Government of India. pp:1 129.

  • IMD (2023). Indian Meteorological Organization. Press Release. https://mausam.imd.gov.in/imd_latest/contents/all_india_forcast_bulletin.php. Accessed 09.03.2023.

  • Kendall, M. G. (1948). Rank correlation methods. Published by C.

    Google Scholar 

  • Koeppen, W. (1936). Das geographische System der Klimate, Handbuch der Klimatologie [The Geographical System of the Climate, Handbook of Climatology]. Teil. C.

    Google Scholar 

  • KSAPCC. (2022). Kerala State Action Plan on Climate Change 2.0 (2023-2030), Directorate of Environment and Climate Change, Department of Environment, Government of Kerala, December,2022.

  • Kylling, A., Albold, A., & Seckmeyer, G. (1997). Transmittance of a cloud is wavelength-dependent in the UV-range: Physical interpretation. Geophysical Research Letters, 24(4), 397–400.

    Article  CAS  ADS  Google Scholar 

  • Laschewski, G., & Matzarakis, A. (2022). Weather-related human outdoor behavior with respect to solar ultraviolet radiation exposure in a changing climate. Atmosphere, 13(8), 1183.

    Article  CAS  ADS  Google Scholar 

  • Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H., Bhartia, P. K., Tamminen, J., et al. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199–1208.

    Article  ADS  Google Scholar 

  • Long, C. S. (2003). UV index forecasting practices around the world. SPARCnewsletter n, 21, 1994.

    Google Scholar 

  • López, M. L., Palancar, G. G., & Toselli, B. M. (2009). Effect of different types of clouds on surface UV-B and total solar irradiance at southern mid-latitudes: CMF determinations at Córdoba, Argentina. Atmospheric Environment, 43(19), 3130–3136.

    Article  ADS  Google Scholar 

  • Lucas, R. M., Yazar, S., Young, A. R., Norval, M., De Gruijl, F. R., Takizawa, Y., et al. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical & Photobiological Sciences, 18(3), 641–680.

    Article  CAS  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society13(3), 245–259.

  • Meloni, D., Casale, G. R., Siani, A. M., Palmieri, S., & Cappellani, F. (2000). Solar UV dose patterns in Italy. Photochemistry and Photobiology, 71(6), 681–690.

    Article  CAS  PubMed  Google Scholar 

  • Morabito, M., Grifoni, D., Crisci, A., Fibbi, L., Orlandini, S., Gensini, G. F., & Zipoli, G. (2014). Might outdoor heat stress be considered a proxy for the unperceivable effect of the ultraviolet-induced risk of erythema in Florence? Journal of Photochemistry and Photobiology B: Biology, 130, 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Neale, R. E., Lucas, R. M., Byrne, S. N., Hollestein, L., Rhodes, L. E., Yazar, S., et al. (2023). The effects of exposure to solar radiation on human health. Photochemical & Photobiological Sciences, 22, 1–37.

  • Ogunjobi, K. O., & Kim, Y. J. (2004). Ultraviolet (0.280–0.400 μm) and broadband solar hourly radiation at Kwangju, South Korea: Analysis of their correlation with aerosol optical depth and clearness index. Atmospheric Research, 71(3), 193–214.

    Article  ADS  Google Scholar 

  • PWD. (1974). Public Works Department, Govt. of Kerala. Physiographical divisions of Kerala.

    Google Scholar 

  • Rendell, R., Higlett, M., Khazova, M., & O’Hagan, J. (2020). Public health implications of solar UV exposure during extreme cold and hot weather episodes in 2018 in Chilton, South East England. Journal of Environmental and Public Health, 2020, 1–9.

    Article  Google Scholar 

  • Sabburg, J., & Wong, J. (2000). The effect of clouds on enhancing UVB irradiance at the earth’s surface: A one year study. Geophysical Research Letters, 27(20), 3337–3340.

    Article  CAS  ADS  Google Scholar 

  • SACN, Vitamin D and Health, Public Health England. (2016). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537616/SACN_Vitamin_D_and_Health_report.pdf. Accessed 12.02.2023.

  • Schmalwieser, A. W., Schmalwieser, V. T., & Schmalwieser, S. S. (2019). Influence of air temperature on the UV exposure of different body sites due to clothing of young women during daily errands. Photochemistry and Photobiology, 95(4), 1068–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckmeyer, G., Erb, R., & Albold, A. (1996). Transmittance of a cloud is wavelength-dependent in the UV-range. Geophysical Research Letters, 23(20), 2753–2755.

    Article  ADS  Google Scholar 

  • SEDAC (1998). Environmental effects of ozone depletion. https://sedac.ciesin.columbia.edu/ozone/docs/UNEP98/UNEP98p73.html. Accessed 16.03.2023.

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  MathSciNet  Google Scholar 

  • Sliney, D. H., & Wengraitis, S. (2006). Is a differentiated advice by season and region necessary? Progress in Biophysics and Molecular Biology, 92(1), 150–160.

    Article  PubMed  Google Scholar 

  • Staiger, H., Den Outer, P. N., Bais, A. F., Feister, U., Johnsen, B., & Vuilleumier, L. (2008). Hourly resolved cloud modification factors in the ultraviolet. Atmospheric Chemistry and Physics, 8(9), 2493–2508.

    Article  CAS  ADS  Google Scholar 

  • Tan, K. C., San Lim, H., & Jafri, M. Z. M. (2018). Study on solar ultraviolet erythemal dose distribution over Peninsular Malaysia using Ozone Monitoring Instrument. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 105–110.

    Article  Google Scholar 

  • Tandon, R., Vashist, P., Gupta, N., Gupta, V., Sahay, P., Deka, D., et al. (2020). Association of dry eye disease and sun exposure in geographically diverse adult (≥ 40 years) populations of India: The SEED (sun exposure, environment and dry eye disease) study-second report of the ICMR-EYE SEE study group. The Ocular Surface, 18(4), 718–730.

    Article  PubMed  Google Scholar 

  • Valappil, N. K. M., Hamza, V., & de Oliveira Júnior, J. F. (2023). Evaluation of daily average temperature trends in Kerala, India, using MERRA-2 reanalysis data: A climate change perspective. Environmental Science and Pollution Research, 30(10), 26663–26686.

    Article  PubMed  Google Scholar 

  • van der Rhee, H., de Vries, E., Coomans, C., van de Velde, P., & Coebergh, J. W. (2016). Sunlight: For better or for worse? A review of positive and negative effects of sun exposure. Cancer Research Frontiers, 2, 156–183.

    Article  Google Scholar 

  • Vashist, P., Tandon, R., Murthy, G. V. S., Barua, C. K., Deka, D., Singh, S., et al. (2020). Association of cataract and sun exposure in geographically diverse populations of India: The CASE study. First Report of the ICMR-EYE SEE Study Group. PloS one, 15(1), e0227868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitt, R., Laschewski, G., Bais, A. F., Diémoz, H., Fountoulakis, I., Siani, A. M., & Matzarakis, A. (2020). UV-index climatology for Europe based on satellite data. Atmosphere, 11(7), 727.

    Article  ADS  Google Scholar 

  • WHO. (1994). Ultraviolet radiation: An authoritative scientific review of environmental and health effects of UV, with reference to global ozone layer depletion, published under the joint sponsorship of the United Nations Environment Programme, the International Commission on Non-Ionizing Radiation Protection and the World Health Organization.

  • WHO. (2002). UV index a practical guide World Health Organization.

  • Zhang, M., Ma, Y., Shi, Y., Gong, W., Chen, S., Jin, S., & Wang, J. (2020). Controlling factors analysis for the Himawari-8 aerosol optical depth accuracy from the standpoint of size distribution, solar zenith angles and scattering angles. Atmospheric Environment, 233, 117501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author, Ninu Krishnan Modon Valappil is a researcher of Universiti Teknologi Malaysia (UTM) under the Post-Doctoral Fellowship Scheme for the project: Q.J130000.21A2.06E28, would like to express sincere gratitude to the Universiti Teknologi Malaysia (UTM) for the support during the preparation of the manuscript. The authors express their gratitude to the anonymous reviewer and editors for their insightful comments and constructive suggestions. Additionally, the authors extend their appreciation to NASA’s Earth Data portal GES DISC, the Directorate of Environment and Climate Change, Government of Kerala, and National Health Mission, Kerala, for providing the essential data required for the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NKMV, VH, and KRAC. The first draft of the manuscript was written by NKMV and PCM. JFdO-Jr, KRAC, and VH commented on previous versions of the manuscript.

Corresponding author

Correspondence to Vijith Hamza.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript and have given the informed consent to publish this article in the Journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valappil, N.K.M., Mammen, P.C., de Oliveira-Júnior, J.F. et al. Assessment of spatiotemporal variability of ultraviolet index (UVI) over Kerala, India, using satellite remote sensing (OMI/AURA) data. Environ Monit Assess 196, 106 (2024). https://doi.org/10.1007/s10661-023-12239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12239-w

Keywords

Navigation