Skip to main content
Log in

Glyphosate spraying exacerbates nitrogen and phosphorus loss in karst slope farmland

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Glyphosate herbicide is an indispensable material in agricultural production. In order to explore the potential environmental effects of glyphosate application in karst slope farmland, this paper used a variable slope steel tank to simulate the surface microtopography and underground pore structure characteristics of karst slope farmland, and combined with artificial rainfall experiments to explore the migration path of glyphosate in karst slope farmland and the impact of spraying glyphosate on soil nitrogen and phosphorus loss. The results showed that under the condition of heavy rain, glyphosate in karst slope farmland was mainly transported and diffused by surface runoff, supplemented by underground runoff; secondly, in different hydrological paths, glyphosate directly affected the content of nitrogen and phosphorus in runoff, and all showed extremely significant positive correlation (p < 0.001). In addition, rainfall conditions such as rainfall intensity, rainfall duration, and runoff affected the content of nitrogen and phosphorus in runoff to varying degrees. In conclusion, the application of glyphosate significantly increased the content of nitrogen and phosphorus in different runoff and accelerated the loss of nitrogen and phosphorus from soil, which not only led to soil degradation, but also threatened the safety of aquatic ecosystem. Therefore, in the prevention and control of agricultural non-point source pollution, the threat of glyphosate to the surrounding aquatic ecosystem cannot be ignored, especially in karst areas with frequent rainstorms and serious water erosion, long-term monitoring and risk assessment of glyphosate are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the findings of this study are not openly available but are available from the corresponding author upon reasonable request by email.

References

  • Bahddou, S., Otten, W., Whalley, W.R., Shin, H., El Gharous, M., & Rickson RJ.(2023). Changes in soil surface properties under simulated rainfall and the effect of surface roughness on runoff, infiltration and soil loss. Geoderma ,431, 116341. https://doi.org/10.1016/j.geoderma.2023.116341.

  • Balestra, V., Vigna, B., De Costanzo, S., & Bellopede R.(2023). Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. Journal of Contaminant Hydrology, 252, 104117. https://doi.org/10.1016/j.jconhyd.2022.104117.

  • Bento, C. P. M., Goossens, D., Rezaei, M., Riksen, M., Mol, H. G. J., Ritsema, C. J., et al. (2017). Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environmental Pollution, 220, 1079–1089. https://doi.org/10.1016/j.envpol.2016.11.033

    Article  CAS  Google Scholar 

  • Bhaskara, B. L., & Nagaraja, P. (2006). Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helvetica Chimica Acta, 89(11), 2686–2693. https://doi.org/10.1002/hlca.200690240

    Article  CAS  Google Scholar 

  • Chang, Y. J., & Zhu, D. (2021). Water security of the megacities in the Yangtze River basin: Comparative assessment and policy implications. Journal of Cleaner Production, 290, 125812. https://doi.org/10.1016/j.jclepro.2021.125812

    Article  Google Scholar 

  • Chen, W., Zeng, F. M., Liu, W., Bu, J. W., Hu, G. F., Xie, S. S., et al. (2021). Organochlorine pesticides in karst soil: Levels, distribution, and source diagnosis. International Journal of Environmental Research and Public Health, 18(21), e11589. https://doi.org/10.3390/ijerph182111589

    Article  CAS  Google Scholar 

  • Chávez-Ortiz, P., Tapia-Torres, Y., Larsen, J., & García-Oliva, F. (2022). Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial activity. Applied Soil Ecology, 169, 104256. https://doi.org/10.1016/j.apsoil.2021.104256

    Article  Google Scholar 

  • Connolly, A., Jones, K., Basinas, I., Galea, K. S., Kenny, L., Mcgowan, P., et al. (2019). International Journal of Hygiene and Environmental Health, 222(2), 205–210. https://doi.org/10.1016/j.ijheh.2018.09.004

    Article  CAS  Google Scholar 

  • Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16–30. https://doi.org/10.1002/ps.2212

    Article  CAS  Google Scholar 

  • Dai, Q. H., Peng, X. D., Yang, Z., & Zhao, L. S. (2017). Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. CATENA, 152, 218–226. https://doi.org/10.1016/j.catena.2017.01.013

    Article  Google Scholar 

  • De Gerónimo, E., & Aparicio, V. C. (2022). Changes in soil pH and addition of inorganic phosphate affect glyphosate adsorption in agricultural soil. European Journal of Soil Science, 73, 13188. https://doi.org/10.1111/ejss.13188

    Article  CAS  Google Scholar 

  • Ford, D., & Williams, P., (2015). Karst hydrogeology and geomorphology /[Rev. ed.]. New York: Wiley. https://doi.org/10.1002/9781118684986.

  • Gan, F., He, B., Qin, Z., & Li, W. (2021). Contribution of bedrock dip angle impact to nitrogen and phosphorus leakage loss under artificial rainfall simulations on slopes parallel to and perpendicular to the bedrock dip in a karst trough valley. CATENA, 196, 104884. https://doi.org/10.1016/j.catena.2020.104884

    Article  CAS  Google Scholar 

  • Gao, J., Xiong, L.F., Ruan, J.M., Zeng, X.L., & Liang, X.M.R. (2022). Esearch progress on the water environmental behavior of glyphosate and its toxicity to aquatic organisms.Asian Journal of Ecotoxicology, 17(03), 422–433.(in Chinese)

  • Gao, R. X., Dai, Q. H., Gan, Y. X., Peng, X. D., & Yan, Y. W. (2019). The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region. Environmental Science and Pollution Research, 26(26), 26900–26911. https://doi.org/10.1007/s11356-019-05838-z

    Article  CAS  Google Scholar 

  • Geng, Y., Jiang, L. J., Zhang, D. Y., Liu, B. J., Zhang, J. G., Cheng, H. Y., et al. (2021). Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Science of the Total Environment, 769, 144396. https://doi.org/10.1016/j.scitotenv.2020.144396

    Article  CAS  Google Scholar 

  • Guo, F. Y., Zhou, M., Xu, J. C., Fein, J. B., Yu, Q., Wang, Y. W., et al. (2021). Glyphosate adsorption onto kaolinite and kaolinite-humic acid composites: Experimental and molecular dynamics studies. Chemosphere, 263, 127979. https://doi.org/10.1016/j.chemosphere.2020.127979

    Article  CAS  Google Scholar 

  • Hatti, V.R.B.K. (2018). Soil properties and productivity of rainfed finger millet under conservation tillage and nutrient management in Eastern dry zone of Karnataka. Journal of Environmental Biology, 39(5), 612–624. https://doi.org/10.22438/jeb/39/5/MRN-724.

  • Hébert, M., Fugère, V., & Gonzalez, A. (2019). The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 17(1), 48–56. https://doi.org/10.1002/fee.1985

    Article  Google Scholar 

  • Hernández-Zamora, M., Rodríguez-Miguel, A., Martínez-Jerónimo, L., & Martínez-Jerónimo, F. (2023). Combined toxicity of glyphosate (Faena®) and copper to the American cladoceran Daphnia exilis—A two-generation analysis. Water, 15(11), 2018.

    Article  Google Scholar 

  • Jaime, R., & Ricardo, D. C. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research & Public Health, 14(6), 595. https://doi.org/10.3390/ijerph14060595

    Article  CAS  Google Scholar 

  • Jiang, S. H., Wang, J. F., Wu, F. X., Xu, S., Liu, J. L., & Chen, J. G. (2023). Extensive abundances and characteristics of microplastic pollution in the karst hyporheic zones of urban rivers. Science of the Total Environment, 857, 159616. https://doi.org/10.1016/j.scitotenv.2022.159616

    Article  CAS  Google Scholar 

  • Jiao, X.H,, Peng, T., Li, SH., Zhang, L., Gu, Z.K., Zhang, X.B., Wang, S.J. (2023). Preliminary research on the threshold erosive rainfall on karst slopes. Journal of Soil and Water Conservation,37(5): 57–63. https://doi.org/10.13870/j.cnki.stbcxb.2023.05.007.

  • Li, C. S., Li, Y. J., Li, Q., Duan, J. L., Hou, J. Y., Hou, Q., et al. (2021). Regenerable magnetic aminated lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and glyphosate. Science of the Total Environment, 788, 147812. https://doi.org/10.1016/j.scitotenv.2021.147812

    Article  CAS  Google Scholar 

  • Liu, J., Elliott, J. A., Wilson, H. F., & Baulch, H. M. (2019). Impacts of soil phosphorus drawdown on snowmelt and rainfall runoff water quality. Journal of Environmental Quality, 48(4), 803–812. https://doi.org/10.2134/jeq2018.12.0437

    Article  CAS  Google Scholar 

  • Long, Y., & Qian, Q. (2019). Assessing the effects of climate change on water quality of plateau deep-water lake - A study case of Hongfeng Lake. Science of the Total Environment, 647, 1518–1530. https://doi.org/10.1016/j.scitotenv.2018.08.031

    Article  CAS  Google Scholar 

  • Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., García Franco, N., Díaz-Pereira, E., et al. (2019). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187(C),133:16–24. https://doi.org/10.1016/j.catena.2019.104352.

  • Meng, X. R., Song, Q. M., Wang, F., Tang, S. Y., & Zhang, Y. P. (2021). Research progress on the behavior and toxicity of glyphosate and glyphosate ammonium in water environments. Asian Journal of Ecotoxicology, 16(03), 144–154. (in Chinese).

    Google Scholar 

  • Okada, E., Allinson, M., Barral, M. P., Clarke, B., & Allinson, G. (2020). Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne Australia. Water Research, 168, 115139. https://doi.org/10.1016/j.watres.2019.115139

    Article  CAS  Google Scholar 

  • Padilla, J.T., & Selim, H.M. (2020). Environmental behavior of glyphosate in soils.Advances in Agronomy, 159,1–34.

  • Panettieri, M., Lazaro, L., López-Garrido, R., Murillo, J. M., & Madejón, E. (2013). Glyphosate effect on soil biochemical properties under conservation tillage. Soil and Tillage Research, 133, 16–24. https://doi.org/10.1016/j.still.2013.05.007

    Article  Google Scholar 

  • Peng, X. D., Dai, Q. H., & Li, C. L. (2017). Research progress on the process and mechanisms of soil water loss or leakage on slope in the southwest karst of China. Journal of Soil and Water Conservation, 31(05), 1–8.

    Google Scholar 

  • Qian, Y., Sun, L., Chen, D. K., Liao, J. F., Tang, L. N., & Sun, Q. (2021). The response of the migration of non-point source pollution to land use change in a typical small watershed in a semi-urbanized area. Science of the Total Environment, 785, 147387. https://doi.org/10.1016/j.scitotenv.2021.147387

    Article  CAS  Google Scholar 

  • Romano-Armada, N., Amoroso, M.J.B. & Rajal, V. (2017). Effect of glyphosate application on soil quality and health under natural and zero tillage field condition. Plant Soil and Environment, 36(2), 141–154. https://doi.org/10.25252/SE/17/51241.

  • Saunders, L., & Pezeshki, R. (2015). Glyphosate in runoff waters and in the root-zone: A review. Toxics, 3(4), 462–480. https://doi.org/10.3390/toxics3040462

    Article  CAS  Google Scholar 

  • Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224. https://doi.org/10.1016/j.apsoil.2013.07.005

    Article  Google Scholar 

  • Soares, C., Pereira, R., Spormann, S., & Fidalgo, F. (2019). Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? – Evaluation of oxidative damage and antioxidant responses in tomato. Environmental Pollution, 247, 256–265. https://doi.org/10.1016/j.envpol.2019.01.063

    Article  CAS  Google Scholar 

  • Stosiek, N., Terebieniec, A., Ząbek, A., Młynarz, P., Cieśliński, H., & Klimek-Ochab, M. (2019). N-phosphonomethylglycine utilization by the psychrotolerant yeast Solicoccozyma terricola M 3.1.4. Bioorganic Chemistry, 93, 102866.

  • Sun, M. J., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163, 114840. https://doi.org/10.1016/j.watres.2019.07.007

    Article  CAS  Google Scholar 

  • Wang, M., Orr, A. A., He, S., Dalaijamts, C., Chiu, W. A., Tamamis, P., & Phillips, T. D. (2019). Montmorillonites can tightly bind glyphosate and paraquat reducing toxin exposures and toxicity. ACS Omega, 4(18), 17702–17713.

    Article  CAS  Google Scholar 

  • Wang, N., Zhang, H., Wang, H., & Zhang, Z. (2004). Spatial analysis of soil erosion and non-point source pollution based on GIS in Erlong Lake watershed Jilin Province. Chinese Geographical Science, 14(4), 355–360.

    Article  Google Scholar 

  • Wang, S. H., Wang, Y. Q., Wang, Y. J., & Wang, Z. (2022). Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecological Indicators, 141, 109084. https://doi.org/10.1016/j.ecolind.2022.109084

    Article  CAS  Google Scholar 

  • Woniak, A., & Gos, M. (2014). Yield and quality of spring wheat and soil properties as affected by tillage system[J].Plant Soil and Environment, 60(4),141–145. https://doi.org/10.2478/intag-2014-0015.

  • Wu, X., Gao, X. B., Tan, T., Li, C. C., Yan, R. Y., Chi, Z. Y., et al. (2021). Sources and pollution path identification of PAHs in karst aquifers: An example from Liulin karst water system, northern China. Journal of Contaminant Hydrology, 241, 103810. https://doi.org/10.1016/j.jconhyd.2021.103810

    Article  CAS  Google Scholar 

  • Yan, Y. J., Dai, Q. H., Yuan, Y., Peng, X. D., Zhao, L. S., & Yang, J. (2018). Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma, 330, 30–40. https://doi.org/10.1016/j.geoderma.2018.05.026

    Article  Google Scholar 

  • Yan, Y. J., Dai, Q. H., Yang, Y. Q., & Lan, X. (2023). Effects of vegetation restoration types on soil erosion reduction of a shallow karst fissure soil system in the degraded karst areas of Southwestern China. Land Degradation & Development, 34(8), 2241–2255. https://doi.org/10.1002/ldr.4603

    Article  Google Scholar 

  • Yang, J., Liang, J. P., Yang, G. H., Feng, Y. Z., Ren, G. G., Ren, C. G., et al. (2020). Characteristics of non-point source pollution under different land use types. Sustainability, 12(5), 2012. https://doi.org/10.3390/su12052012

    Article  CAS  Google Scholar 

  • Yang, X. M., Wang, F., Bento, C. P.M., Xue, S., Gai, L.T., van Dam, R., et al. (2015). Short-term transport of glyphosate with erosion in Chinese loess soil — A flume experiment. Science of The Total Environment,512–513. https://doi.org/10.1016/j.scitotenv.2015.01.071.

  • Yang, Y. J., & Zhang, B. (2021). Overview and trends in the development of global amino acid herbicides in 2021. World Pesticides, 43(04), 19–34. (in Chinese).

    Google Scholar 

  • Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 102(12), 5033–5043.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, X., Bi, Z., Yu, Y., Shi, P., Ren, L., & Shan, Z. (2020). The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau. China. Science of the Total Environment, 718, 137305.

    Article  CAS  Google Scholar 

  • Zhang, J., Chen, H. S., Fu, Z. Y., Luo, Z. D., Wang, F., & Wang, K. L. (2022). Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. European Journal of Soil Science, 73(4), e13288. https://doi.org/10.1111/ejss.13288

    Article  CAS  Google Scholar 

  • Zhao, H. L., Zheng, J. X., Zhu, Y. K., Li, L. Y., & Cai, X. T. (2022). Risk assessment of nonpoint source pollution in the Huaihe River Basin. Water, 14(21), 3505. https://doi.org/10.3390/w14213505

    Article  CAS  Google Scholar 

  • Zhou, C., Wang, Y., Li, C., Sun, R., Yu, Y., & Zhou, D. (2013a). Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environmental Pollution, 180, 71–77.

    Article  CAS  Google Scholar 

  • Zhou, C. F., Lin, J. W., Li, Y., & Liu, A. Q. (2016). Effect of glyphosate on inorgancic phosphorus transformation in soil. Journal of Northwest Forestry University, 31(06), 71–77.

    CAS  Google Scholar 

  • Zhu, Y.G., Chen, L., Wei, G.Y., Li, S., & Shen, Z.Y. (2019). Uncertainty assessment in baseflow nonpoint source pollution prediction: The impacts of hydrographic separation methods, data sources and baseflow period assumptions. Journal of Hydrology,574.915–925. https://doi.org/10.1016/j.jhydrol.2019.05.010.

Download references

Acknowledgements

Our acknowledgements are extended to the anonymous reviewers for their constructive review of this manuscript.

Funding

This research was supported jointly by the Regional Fund of National Natural Science Foundation of China (42167044), the National Natural Science Foundation of China (42007067), the Science and Technology Plan Project of Guizhou Province ([2020]1Y176), and the Guizhou Provincial Water Conservancy Science and Technology Projects (KT202205).

Author information

Authors and Affiliations

Authors

Contributions

You Zhang: methodology, investigation, resources, writing—original draft, writing—review and editing. Youjin Yan: investigation, methodology, writing—review and editing. Quanhou Dai: conceptualization, resources, methodology, investigation, validation, writing—review editing, supervision, project administration, and funding acquisition. Juan Tan: resources, investigation, writing—review and editing, and funding acquisition. Chenyang Wang: methodology, investigation, validation, writing—review editing. Hong Zhou: conceptualization, methodology, supervision, writing—review editing. Zeyin Hu: methodology, visualization, writing—review editing.

Corresponding author

Correspondence to Quanhou Dai.

Ethics declarations

Ethics approval and consent to participate

The authors declare that the manuscript is original and has not been published in any journal. The authors have participated in the preparation and submission of this paper for publication in Environmental Monitoring and Assessment.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yan, Y., Dai, Q. et al. Glyphosate spraying exacerbates nitrogen and phosphorus loss in karst slope farmland. Environ Monit Assess 196, 80 (2024). https://doi.org/10.1007/s10661-023-12238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12238-x

Keywords

Navigation