Skip to main content
Log in

Metals stress on soil enzyme activities and herbs defense in the vicinity of high traffic roadways

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study has investigated the impact of vehicle sourced heavy metals (HMs) on soil enzyme activities and plants in and around high traffic roadways near the metropolitan area. In detail, the defense response against HM pollution was studied by considering the commonly available herbs around the roadside area namely Alternanthera paronychioides, Ageratum conyzoides, Spilanthes acmella, and Parthenium hysterophorus. The study reported that the HM concentrations such as Cu, Ni, Zn, Mn, and Cr were observed in the range of 6.05 ± 0.1 to 309 ± 0.5 mg/kg in roadside soil and 5.2 ± 0.1to 451 ± 4.2 mg/kg in the herbs collected from roadside area. The soil enzyme (urease, dehydrogenase, amylase, catalase, peroxidase, and polyphenol oxidase) activities decreased by 22.56 to 77.84% in roadside soil and lower IC50 values were observed for DPPH (2.32–4.67) and H2O2 (1.59–2.15) free radical scavenging activities in plants collected from roadside area. The flavonoid and phenolic content in plants collected from the roadside area ranges from 12.65 ± 0.2 to 15.75 ± 0.3 mg quercitin/g and 0.61 ± 0.04 to 1.16 ± 0.1 mg gallic acid/g respectively while in plant collected from the control areas ranges from 7.96 ± 0.1 to 11.24 ± 0.05 and 0.47 ± 0.01 to 0.61 ± 0.1. In addition, the contamination factor (CF) (1.53–11.92) and geo-accumulation index (Igeo) (0.031–2.99) in soil and bioaccumulation factor (BAF) (0.72–2.73) of Cu, Ni, Zn, Mn, and Crin plants indicated that the soil and plants growing along the highway were heavily contaminated with HM. Finally, Pearson correlation matrix confirmed the inhibition effect of HM on soil enzymatic activities and enzymatic defense of plants in response to the HM stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abderrahmane, B., Naima, B., Tarek, M., & Abdelghani, M. (2021). Influence of highway traffic on contamination of roadside soil with heavy metals. Civil Engineering Journal, 7(8), 1459–1471.

    Article  Google Scholar 

  • Adimalla, N. (2020). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environmental Geochemistry and Health, 42(1), 173–190. https://doi.org/10.1007/s10653-019-00324-4

    Article  CAS  Google Scholar 

  • Ahatović, A., Čakar, J., Subašić, M., Hasanović, M., Murtić, S., & Durmić-Pašić, A. (2020). Plantago lanceolata L. from serpentine soils in central Bosnia tolerates high levels of heavy metals in soil. Water, Air, & Soil Pollution, 231, 1–12. https://doi.org/10.1007/s11270-020-04561-7

    Article  CAS  Google Scholar 

  • Aladesanmi, O. T., Oroboade, J. G., Osisiogu, C. P., & Osewole, A. O. (2019). Bioaccumulation factor of selected heavy metals in Zea mays. Journal of Health and Pollution, 9(24), 191207. https://doi.org/10.5696/2156-9614-9.24.191207

    Article  Google Scholar 

  • Al-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., BouOrm, N., Xavier, C. M., & Dumitriu, C. S. (2021). Contamination assessment of heavy metals in agricultural soil, in the Liwa Area (UAE). Toxics, 9(3), 53.

    Article  CAS  Google Scholar 

  • Al-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., Naseem, M., Sharma, M., & Farok, H. M. (2023). Metal composition and contamination assessment of urban roadway dusts on the Abu Dhabi-Liwa Highway. UAE. Frontiers in Environmental Science, 11, 1157101.

    Article  Google Scholar 

  • Altaf, R., Altaf, S., Hussain, M., Shah, R. U., Ullah, R., Ullah, M. I., Rauf, A., Ansari, M., Alharbi, S., Alfarraj, S., & Datta, R. (2021). Heavy metal accumulation by roadside vegetation and implications for pollution control. PLoS ONE, 16(5), e0249147. https://doi.org/10.1371/journal.pone.0249147

    Article  CAS  Google Scholar 

  • Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., & Kuzyakov, Y. (2020). Meta-analysis of heavy metal effects on soil enzyme activities. Science of the Total Environment, 737, 139744.

    Article  CAS  Google Scholar 

  • Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., Sharma, S., Tripathi, K. D., Dubey, K. N., & Chauhan, D. K. (2016). Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science, 4, 69.

    Article  Google Scholar 

  • Bartkowiak, A., Lemanowicz, J., & Lamparski, R. (2020). Assessment of selected heavy metals and enzyme activity in soils within the zone of influence of various tree species. Scientific Reports, 10(1), 14077.

    Article  Google Scholar 

  • Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., & Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98–106. https://doi.org/10.1016/j.envexpbot.2018.10.017

    Article  CAS  Google Scholar 

  • Bhagyawant, S. S., Narvekar, D. T., Gupta, N., Bhadkaria, A., Koul, K. K., & Srivastava, N. (2019). Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiology and Molecular Biology of Plants, 25(3), 683–696. https://doi.org/10.1007/s12298-019-00667-3

    Article  CAS  Google Scholar 

  • Bhat, T. A., Bhat, J. I. A., Lone, F. A., Ali, T., Nazir, N., Khan, S. H., & Wani, M. Y. (2020). Effect of vehicular pollution on physicochemical parameters and accumulation of heavy metals along roadside soils in Sonamarg forest ecosystem. International Journal of Chemical Studies, 8(5), 184–188.

    Article  CAS  Google Scholar 

  • Borah, G., & Deka, H. (2023). Crude oil associated heavy metals (HMs) contamination in agricultural land: Understanding risk factors and changes in soil biological properties. Chemosphere, 310, 136890. https://doi.org/10.1016/j.chemosphere.2022.136890

    Article  CAS  Google Scholar 

  • Boruah, T., Chakravarty, P., & Deka, H. (2020). Phytosociology and antioxidant profile study for selecting potent herbs for phytoremediation of crude oil–contaminated soils. Environmental Monitoring and Assessment, 192(12), 1–13.

    Article  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Antioxidative activity of phenolic composition of commercial extracts of sage and rosemary. Lebensm-Wiss.u.Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Casida, L. E., Jr., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371–376.

    Article  CAS  Google Scholar 

  • Chakravarty, P., & Deka, H. (2021). Enzymatic defense of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Scientific Reports, 11(1), 718.

    Article  CAS  Google Scholar 

  • Chen, Z., Yan, W., Sun, L., Tian, J., & Liao, H. (2016). Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Journal of Proteomics, 143, 151–160.

    Article  CAS  Google Scholar 

  • Cole, M. A. (1977). Lead inhibition of enzyme synthesis in soil. Applied and Environmental Microbiology, 33(2), 262–268.

    Article  CAS  Google Scholar 

  • Din, I. U., Muhammad, S., & Rehman, I. U. (2023). Heavy metal (loid)s contaminations in soils of Pakistan: A review for the evaluation of human and ecological risks assessment and spatial distribution. Environmental Geochemistry and Health, 45(5), 1991–2012.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., & Pipalde, J. S. (2018). Soil enzymatic activities as influenced by lead and nickel concentrations in a Vertisol of Central India. Bulletin of Environmental Contamination and Toxicology, 101(3), 380–385.

    Article  CAS  Google Scholar 

  • Fu, L., Yang, W., & Wei, Y. (2009). Effects of copper pollution on the activity of soil invertase and urease in loquat orchards. Chinese Journal of Geochemistry, 28, 76–80.

    Article  CAS  Google Scholar 

  • Gautam, S., Anjani, K., & Srivastava, N. (2016). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22, 121–129.

    Article  CAS  Google Scholar 

  • German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., & Allison, S. D. (2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43(7), 1387–1397.

    Article  CAS  Google Scholar 

  • Ghosh, S. P., Raj, D., & Maiti, S. K. (2020). Risks assessment of heavy metal pollution in roadside soil and vegetation of national highway crossing through industrial area. Environmental Processes, 7(4), 1197–1220.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., & Hagerman, A. E. (2002). Tannin chemistry handbook. Maiami: Oxford university, 659. http://www.users.muohio.edu/hagermae/(2002)

  • Hernández-Rodríguez, P., Baquero, L. P., & Larrota, H. R. (2019). Flavonoids: Potential therapeutic agents by their antioxidant capacity. Bioactive Compounds, Elsevier, 265–288. https://doi.org/10.1016/B978-0-12-814774-0.00014-1

  • Hoffmann, G. G., & Teicher, K. (1961). A colorimetric technique for determining urease activity in soil. DuBod, 95, 55–63.

    Google Scholar 

  • Hosseini, N. S., Sobhanardakani, S., Cheraghi, M., Lorestani, B., & Merrikhpour, H. (2020). Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardariadraba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research, 27, 13301–13314. https://doi.org/10.1007/s11356-020-07874-6

    Article  CAS  Google Scholar 

  • Huang, S. H., Bing, P. E. N. G., Yang, Z. H., Chai, L. Y., & Zhou, L. C. (2009). Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China, 19(1), 241–248.

    Article  CAS  Google Scholar 

  • Istanbullu, S. N., Sevik, H., Isinkaralar, K., & Isinkaralar, O. (2023). Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bulletin of Environmental Contamination and Toxicology, 110(4), 78.

    Article  CAS  Google Scholar 

  • Jadoon, S., Muhammad, S., Hilal, Z., Ali, M., Khan, S., & Khattak, N. U. (2020). Spatial distribution of potentially toxic elements in urban soils of Abbottabad city,(N Pakistan): Evaluation for potential risk. Microchemical Journal, 153, 104489.

    Article  CAS  Google Scholar 

  • Jay, M., Gonnet, J. F., Wollenweber, E., & Voirin, B. (1975). Sur l’analyse qualitative desaglyconesflavoniques dans uneoptiquechimiotaxinomique. Phytochemistry, 14(7), 1605–1612. https://doi.org/10.1016/0031-9422(75)85359-3

    Article  CAS  Google Scholar 

  • Johnson, J. I., & Temple, K. L. (1964). Some variables affecting the measurement of catalase activity in soil. Soil Science Society of America Processes Journal, 28, 207–216. https://doi.org/10.2136/sssaj1964.03615995002800020024x

    Article  CAS  Google Scholar 

  • Kaur, M., Bhatti, S. S., Katnoria, J. K., & Nagpal, A. K. (2021). Investigation of metal concentrations in roadside soils and plants in urban areas of Amritsar, Punjab, India, under different traffic densities. Environmental Monitoring and Assessment, 193, 1–20.

    Article  Google Scholar 

  • Khan, S. A., Muhammad, S., Nazir, S., & Shah, F. A. (2020). Heavy metals bounded to particulate matter in the residential and industrial sites of Islamabad, Pakistan: Implications for non-cancer and cancer risks. Environmental Technology & Innovation, 19, 100822.

    Article  Google Scholar 

  • Kord, B. E. H. Z. A. D., Mataji, A., & Babaie, S. (2010). Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. International Journal of Environmental Science & Technology, 7, 79–84. https://doi.org/10.1007/BF03326119

    Article  CAS  Google Scholar 

  • Kujur, M., & Kumar Patel, A. (2014). Kinetics of soil enzyme activities under different ecosystems: An index of soil quality. Chilean Journal of Agricultural Research, 74(1), 96–104. https://doi.org/10.4067/S0718-58392014000100015

    Article  Google Scholar 

  • Lee, H. G., Kim, H. K., Noh, H. J., Byun, Y. J., Chung, H. M., & Kim, J. I. (2021). Source identification and assessment of heavy metal contamination in urban soils based on cluster analysis and multiple pollution indices. Journal of Soils and Sediments, 21, 1947–1961.

    Article  CAS  Google Scholar 

  • Lin, H., Liu, C., Li, B., & Dong, Y. (2021). Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials, 402, 123829.

    Article  CAS  Google Scholar 

  • Liu, K., Li, C., Tang, S., Shang, G., Yu, F., & Li, Y. (2020). Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere, 251, 126415.

    Article  CAS  Google Scholar 

  • Midhat, L., Ouazzani, N., Hejjaj, A., Ouhammou, A., & Mandi, L. (2019). Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicology and Environmental Safety, 169, 150–160.

    Article  CAS  Google Scholar 

  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 470–481. https://doi.org/10.4067/S0718-95162010000200008

    Article  Google Scholar 

  • Muhammad, S. (2023). Evaluation of heavy metals in water and sediments, pollution, and risk indices of Naltar Lakes. Pakistan. Environmental Science and Pollution Research, 30(10), 28217–28226.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den Sedimenten des RheinsVeranderungenseit 1971. Umschau, 79(24), 778–783.

    Google Scholar 

  • Nan, H., Jifang, Z., Dexin, D., Guangyue, L., Jie, Y., Xin, C., & Jia, Y. (2013). Screening of native hyperaccumulators at the Huayuan River contaminated by heavy metals. Bioremediation Journal, 17(1), 21–29.

    Article  Google Scholar 

  • Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17(7), 2204.

    Article  CAS  Google Scholar 

  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.

    Article  CAS  Google Scholar 

  • Pachura, P., Ociepa-Kubicka, A., & Skowron-Grabowska, B. (2016). Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalination and Water Treatment, 57(3), 1469–1477. https://doi.org/10.1080/19443994.2015.1017330

    Article  CAS  Google Scholar 

  • Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinesegreen tea. Carcinogenesis, 10(6), 1003–1008.

    Article  CAS  Google Scholar 

  • Rucińiska-Sobkowiak, R. (2010). Oxidative stress in plants exposed to heavy metals. Postepybiochemii, 56(2), 191–200.

    Google Scholar 

  • Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 118.

    Article  Google Scholar 

  • Shen, G., Lu, Y., & Hong, J. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety, 63(3), 474–480. https://doi.org/10.1016/j.ecoenv.2005.01.009

    Article  CAS  Google Scholar 

  • Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., et al. (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(22), 3158.

    Article  CAS  Google Scholar 

  • Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254. https://doi.org/10.1007/s10311-013-0407-5

    Article  CAS  Google Scholar 

  • Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A., & Ganei, S. A. (2018). Vehicular stress a cause for heavy metal accumulation and change in physicochemical characteristics of road side soils in Pahalgam. Environmental Monitoring and Assessment, 190(6), 1–10. https://doi.org/10.1007/s10661-018-6731-2

    Article  CAS  Google Scholar 

  • Singha, W. J., Borah, G., & Deka, H. (2022). Physicochemical, biological and heavy metal status of spent oil-contaminated soils in the vicinity of garages in and around Guwahati city, Assam, India. Current Science, 123(10), 00113891.

    Article  Google Scholar 

  • Skorbiłowicz, M., Skorbiłowicz, E., & Rogowska, W. (2021). Heavy metal concentrations in roadside soils on the Białystok-Budzisko route in North eastern Poland. Minerals, 11(11), 1290. https://doi.org/10.3390/min11111290

    Article  CAS  Google Scholar 

  • Burt, R. (2014). Soil survey field and laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Natural Resources Conservation Service, Kellog Soil Survey Laboratory. Soil Survey Investigations Report No. 51, Version 2.0.

  • Sulaiman, F. R., & Hamzah, H. A. (2018). Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes, 7(1), 1–11.

    Article  Google Scholar 

  • Sun, L., Guo, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., & Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA, 175, 101–109.

    Article  CAS  Google Scholar 

  • Sytar, O., Ghosh, S., Malinska, H., Zivcak, M., & Brestic, M. (2021). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum, 173(1), 148–166. https://doi.org/10.1111/ppl.13285

    Article  CAS  Google Scholar 

  • Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., & Chen, A. (2019). Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. Journal of Environmental Management, 242, 121–130.

    Article  CAS  Google Scholar 

  • Torbati, S., Kangarloei, B. A., & Khataee, A. (2021). Bioconcentration of heavy metals by three plant species growing in Golmarz wetland, in northwestern Iran: The plants antioxidant responses to metal pollutions. Environmental Technology & Innovation, 24, 101804.

    Article  CAS  Google Scholar 

  • Tuladhar, P., Sasidharan, S., & Saudagar, P. (2021). Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol Agents and Secondary Metabolites, Elsevier, 419–441. https://doi.org/10.1016/B978-0-12-822919-4.00017-X

  • Wang, M., & Zhang, H. (2018). Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. International Journal of Environmental Research and Public Health, 15(6), 1064. https://doi.org/10.3390/ijerph15061064

    Article  CAS  Google Scholar 

  • Wyszkowska, J. (2002). Soil contamination by chromium and its enzymatic activity and yielding. Polish Journal of Environmental Studies, 11(1), 79–84.

    CAS  Google Scholar 

  • Xie, X., Pu, L., Wang, Q., Zhu, M., Xu, Y., & Zhang, M. (2017). Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Science of the Total Environment, 607, 1419–1427.

    Article  Google Scholar 

  • Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, X. F. (2011). Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere, 83(1), 57–62.

    Article  CAS  Google Scholar 

  • Zhang, S., Guo, H., Zhang, S., Fan, H., & Shi, J. A. (2020). Are oil spills an important source of heavy metal contamination in the Bohai Sea, China? Environmental Science and Pollution Research, 27(3), 3449–3461. https://doi.org/10.1007/s11356-019-06913-1

    Article  CAS  Google Scholar 

  • Zheljazkov, V. D., & Nielsen, N. E. (1996). Effect of heavy metals on peppermint and cornmint. Plant and Soil, 178(1), 59–66. https://doi.org/10.1007/BF00011163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the department of Botany, Gauhati University, Assam, India, for providing the basic facilities in the laboratory to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

Hemen Deka—conceptualization, provided laboratory for work and guided Mridulina Hazarika to prepare the first draft of the manuscript; Mridulina Hazarika—did experimental work; Glory Borah—revise the manuscript and did statistical analysis; W James Singha—revise the manuscript and did statistical analysis under supervision of Hemen Deka.

Corresponding author

Correspondence to Hemen Deka.

Ethics declarations

Ethical approval

Not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, M., Borah, G., Singha, W.J. et al. Metals stress on soil enzyme activities and herbs defense in the vicinity of high traffic roadways. Environ Monit Assess 195, 1546 (2023). https://doi.org/10.1007/s10661-023-12142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12142-4

Keywords

Navigation