Skip to main content

Advertisement

Log in

Soil microbes: a natural solution for mitigating the impact of climate change

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature’s unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  • AbdElgawad, H., Abuelsoud, W., Madany, M. M. Y., Selim, S., Zinta, G., Mousa, A. S. M., & Hozzein, W. N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10(12), 1675. https://doi.org/10.3390/biom10121675

    Article  CAS  Google Scholar 

  • Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 258916. https://doi.org/10.3389/fmicb.2017.00971

    Article  Google Scholar 

  • Armada, E., Azcon, R., Lopez-Castillo, O. M., Calvo-Polanco, M., & Ruiz-Lozano, J. M. (2015). Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 90, 64–74. https://doi.org/10.1016/j.plaphy.2015.03.004

    Article  CAS  Google Scholar 

  • Balamurugan, A., Jayanthi, R., Nepolean, P., Pallavi, R. V., & Premkumar, R. (2011). Studies on cellulose degrading bacteria in tea garden soils. African Journal of Plant Science, 5(1), 22–27.

    CAS  Google Scholar 

  • Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., Dean, A. J., Schuler, D., Phillips, E. J., & Lovley, D. R. (2000). N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environmental Microbiology, 2, 266–273. https://doi.org/10.1046/j.1462-2920.2000.00096.x

    Article  CAS  Google Scholar 

  • Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 466052. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Bertsch, J., & Muller, V. (2015). CO Metabolism in the Acetogen Acetobacterium woodii. Applied and Environmental Microbiology, 81(17), 5949–5956. https://doi.org/10.1128/AEM.01772-15

    Article  CAS  Google Scholar 

  • Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21. https://doi.org/10.1590/S1517-838246120131354

    Article  CAS  Google Scholar 

  • Broughton, W. J., Hernandez, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) — Model food legumes. Plant and Soil, 252(1), 55–128.

    Article  CAS  Google Scholar 

  • Cai, Y. F., Zheng, Y., Bodelier, P. L. E., Conrad, R., & Jia, Z. J. (2016). Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications, 7, 11728. https://doi.org/10.1038/ncomms11728

    Article  CAS  Google Scholar 

  • Casanovas, E. M., Barassi, C., & Sueldo, R. J. (2002). Azospirillum inoculation mitigates water stress effects in maize seedlings. JSTOR, 30, 343–350.

    Google Scholar 

  • Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., & Webster, N. S. (2019). Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569–586.

    Article  CAS  Google Scholar 

  • Chandra, S. K., Kumar, M., Singh, S. K., & Kumari, A. (2013). Impact of climate change on soil health and fertility. In In the Proceeding of National Seminar on Climate Change and Indian Horticulture: Exploring Adaptation and Mitigation Strategies for Expeditious Resilience (pp. 138–145). Organised by Bihar Horticultural Society & Bihar Agricultural University Sabour.

    Google Scholar 

  • Choudhury, B. U., Ferraris, S., Ashton, R. W., Powlson, D. S., & Whalley, W. R. (2018). The effect of microbial activity on soil water diffusivity. European Journal of Soil Science, 69(3), 407–413. https://doi.org/10.1111/ejss.12535

    Article  CAS  Google Scholar 

  • Cohen, A. C., Travaglia, C. N., Bottini, R., & Piccoli, P. N. (2009). Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 87, 455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  • Conrad, R. (2009). The Global Methane Cycle: Recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1, 285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x

    Article  CAS  Google Scholar 

  • Conrad, R. (2020). Microbial ecology of methanogens and methanotrophs. Advances in Microbial Physiology, 77, 1–73. https://doi.org/10.1016/bs.ampbs.2020.06.001

    Article  Google Scholar 

  • Costa, O. Y., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9, 1636.

    Article  Google Scholar 

  • Dar, M. H., & Reshi, Z. A. (2017). Vesicular arbuscular mycorrhizal (VAM) fungi- as a major biocontrol agent in modern sustainable agriculture system. Russian Agricultural Sciences, 43, 138–143. https://doi.org/10.3103/S1068367417020057

    Article  Google Scholar 

  • Dutta, J., & Bora, U. (2019). Role of PGPR for alleviating aluminum toxicity in acidic soil. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Springer.

    Google Scholar 

  • Gerba, C. P. (2005). Waste disposal on land/ Liquid. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp. 238–247). Elsevier. https://doi.org/10.1016/B0-12-348530-4/00124-7

    Chapter  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 1-15. https://doi.org/10.6064/2012/963401

  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  Google Scholar 

  • Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577

    Article  CAS  Google Scholar 

  • Gursoy, S. (2021). Soil compaction due to increased machinery intensity in agricultural production: its main causes, effects and management. IntechOpen. https://doi.org/10.5772/intechopen.98564

  • Hassan, M. U., Aamer, M., Mahmood, A., Awan, M. I., Barbanti, L., Seleiman, M. F., Bakhsh, G., Alkharabsheh, H. M., Babur, E., Shao, J., Rasheed, A., & Huang, G. (2022). Management strategies to mitigate N2O emissions in agriculture. Life, 12(3), 439.

    Article  CAS  Google Scholar 

  • Helliwell, J. R., Miller, A. J., Whalley, W. R., Mooney, S. J., & Sturrock, C. J. (2014). Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biology and Biochemistry, 74, 138–147.

    Article  CAS  Google Scholar 

  • Hu, G., Li, Y., Ye, C., Liu, L., & Chen, X. (2018). Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology, 37(5), 532–547. https://doi.org/10.1016/j.tibtech.2018.10.00810

    Article  Google Scholar 

  • Huey, C. J., Gopinath, S. C., Uda, M. N. A., Zulhaimi, H. I., Jaafar, M. N., Kasim, F. H., & Yaakub, A. R. W. (2020). Mycorrhiza: a natural resource assists plant growth under varied soil conditions. 3 Biotech, 10, 1–9.

    Article  Google Scholar 

  • IPCC. (2021). Climate Change 2021: The physical science basis. In V. Masson-Delmotte et al. (Eds.), Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Jagadesh, M., Selvi, D., Thiyageshwari, S., Srinivasarao, C., Kalaiselvi, T., Lourdusamy, K., Kumaraperumal, R., & Allan, V. (2023). Soil carbon dynamics under different ecosystems of Ooty region in the Western Ghats biodiversity hotspot of India. Journal of Soil Science and Plant Nutrition, 23, 1374–1385. https://doi.org/10.1007/s42729-023-01129-2

    Article  CAS  Google Scholar 

  • Jagadesh, M., Srinivasarao, C., Selvi, D., Thiyageshwari, S., Kalaiselvi, T., Kumari, A., Singh, S. K., Lourdusamy, K., Kumaraperumal, R., Allan, V., Dash, M., Raja, P., Surendran, U., & Pramanick, B. (2023). Quantifying the unvoiced carbon pools of the Nilgiri Hill region in the Western Ghats global biodiversity Hotspot—First Report. Sustainability, 15(6), 5520. https://doi.org/10.3390/su15065520

    Article  CAS  Google Scholar 

  • Jansson, C., Vogel, J., Hazen, S., Brutnell, T., & Mockler, T. (2018). Climate-smart crops with enhanced photosynthesis. Journal of Experimental Botany, 69, 3801–3809. https://doi.org/10.1093/jxb/ery213

    Article  CAS  Google Scholar 

  • Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35–46. https://doi.org/10.1038/s41579-019-0265-7

    Article  CAS  Google Scholar 

  • Kapilan, R., Vaziri, M., & Zwiazek, J. J. (2018). Regulation of aquaporins in plants under stress. Biological Research, 51, 4. https://doi.org/10.1186/s40659-018-0152-0

    Article  CAS  Google Scholar 

  • Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K., & Verma, K. K. (2022). Climate change and its impact on crops: a comprehensive investigation for sustainable agriculture. Agronomy, 12(12), 3008. https://doi.org/10.3390/agronomy12123008

    Article  CAS  Google Scholar 

  • Kumari A, Singh SK, Al-Tawaha ARM, Thangadurai D, Panigatti S and Sangeetha J (2023). Effect of mycorrhizal inoculation on citrus seedling growth and nutrient uptake. In Microbial fertilizer technology for sustainable crop production. Editors: Jeyabalan Sangeetha, Abdel Rahman M. Al Tawaha, Devarajan Thangadurai, published by AAP/CRC Press, Taylor and Francis group, (In-press).

  • Lakshmanan, V., Ray, P., & Craven, K. D. (2017). Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture. Methods in Molecular Biology, 1631, 69–84. https://doi.org/10.1007/978-1-4939-7136-7_4

    Article  CAS  Google Scholar 

  • Lal, R. (2009). Soil degradation as a reason for inadequate human nutrition. Food Security, 1, 45–57. https://doi.org/10.1007/s12571-009-0009-z

    Article  Google Scholar 

  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.

    Article  CAS  Google Scholar 

  • Liebner, S., Rublack, K., Stuehrmann, T., & Wagner, D. (2008). Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microbial Ecology, 57(1), 25–35.

    Article  Google Scholar 

  • Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. Plants, 9(1), 97. https://doi.org/10.3390/plants9010097

    Article  CAS  Google Scholar 

  • Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2003). Anaerobic metabolism: linkages to trace gases and aerobic processes. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry, Vol. 8: Biogeochemistry (pp. 317–424). Elsevier.

    Chapter  Google Scholar 

  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  Google Scholar 

  • Mouser, P. J., N’Guessan, A. L., Elifantz, H., Holmes, D. E., Williams, K. H., Wilkins, M. J., Long, P. E., & Lovley, D. R. (2009). Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium contaminated groundwater. Environmental Science & Technology, 43, 4386–4392. https://doi.org/10.1021/es8031055

    Article  CAS  Google Scholar 

  • Msimbira, L. A., & Smith, D. L. (2020). The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front Sustain Food Syst, 4, 106. https://doi.org/10.3389/fsufs.2020.00106

    Article  Google Scholar 

  • Mueller E (2018) The effect of acid rain on soil nutrient levels and plant growth. American Geophysical Union, Fall Meeting 2018, abstract, Dec 2018, Pp. ED41D-1217. https://ui.adsabs.harvard.edu/abs/2018AGUFMED41D1217M

  • Nawaz, R., Parkpian, P., Garivait, H., Anurakpongsatorn, P., DeLaune, R. D., & Jugsujinda, A. (2012). Impacts of acid rain on base cations, aluminum, and acidity development in highly weathered soils of Thailand. Communications in Soil Science and Plant Analysis, 43, 1382–1400. https://doi.org/10.1080/00103624.2012.670347

    Article  CAS  Google Scholar 

  • Naylor, D., & Coleman-Derr, D. (2018). Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 8, 303756. https://doi.org/10.3389/fpls.2017.02223

    Article  Google Scholar 

  • Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R., McClure, R., Lipton, M., Hofmockel, K. S., & Jansson, J. K. (2020). Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources, 45, 29–59. https://doi.org/10.1146/annurev-environ-012320-082720

    Article  Google Scholar 

  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57.

    Article  CAS  Google Scholar 

  • Pereyra, M. A., García, P., Colabelli, M. N., Barassi, C. A., & Creus, C. M. (2012). A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53, 94–97. https://doi.org/10.1016/j.apsoil.2011.11.007

    Article  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    Article  CAS  Google Scholar 

  • Prosser, J. I. (2007). Microorganisms cycling soil nutrients and their diversity. In J. D. Van Elsas, J. K. Jansson, & J. T. Trevors (Eds.), Modern Soil Microbiology (pp. 237–261). CRC Press.

    Google Scholar 

  • Pugnaire, F. I., Morillo, J. A., Peñuelas, J., Reich, P. B., Bardgett, R. D., Gaxiola, A., Wardle, D. A., & van der Putten, W. H. (2019). Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 5(11), eaaz1834. https://doi.org/10.1126/sciadv.aaz1834

    Article  CAS  Google Scholar 

  • Quiroga, G., Erice, G., Aroca, R., Chaumont, F., & Ruiz-Lozano, J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01056

  • Raman, J., Kim, J. S., Choi, K. R., Eun, H., Yang, D., Ko, Y. J., & Kim, S. J. (2022). Application of lactic acid bacteria (LAB) in sustainable agriculture: advantages and limitations. International Journal of Molecular Sciences, 23(14), 7784. https://doi.org/10.3390/ijms23147784

    Article  CAS  Google Scholar 

  • Rana, K., Rana, N., & Singh, B. (2020). Applications of sulfur oxidizing bacteria. In R. Salwan & V. Sharma (Eds.), Physiological and biotechnological aspects of extremophiles (pp. 131–136). Academic Press. https://doi.org/10.1016/B978-0-12-818322-9.00010-1

    Chapter  Google Scholar 

  • Rengel, Z. (2011). Soil pH, Soil Health and Climate Change. In B. Singh, A. Cowie, & K. Chan (Eds.), Soil health and climate change. Soil Biology (Vol. 29). Springer. https://doi.org/10.1007/978-3-642-20256-8_4

    Chapter  Google Scholar 

  • Rillig, M. C., Aguilar-Trigueros, C. A., Camenzind, T., Cavagnaro, T. R., Degrune, F., Hohmann, P., Lammel, D. R., Mansour, I., Roy, J., & Yang, G. (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. The New Phytologist, 222(3), 1171–1175. https://doi.org/10.1111/nph.15602

    Article  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(5), 468–474. https://doi.org/10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  • Sanyal, S., Chakrabarti, B., Prasanna, R., Bhatia, A., Kumar, S. N., Purakayastha, T. J., Joshi, R., & Sharma, A. (2022). Influence of cyanobacterial inoculants, elevated carbon dioxide, and temperature on plant and soil nitrogen in soybean. Journal of Basic Microbiology, 62(10), 1216–1228. https://doi.org/10.1002/jobm.202200046

    Article  CAS  Google Scholar 

  • Schmidt, R., Koberl, M., Mostafa, A., Ramadan, E. M., Monschein, M., Jensen, K. B., Bauer, R., & Berg, G. (2014). Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers in Microbiology, 5, 70624. https://doi.org/10.3389/fmicb.2014.00064

    Article  Google Scholar 

  • Suman, J., Rakshit, A., Ogireddy, S. D., Singh, S., Gupta, C., & Chandrakala, J. (2022). Microbiome as a key player in sustainable agriculture and human health. Frontiers in Soil Science, 2, 821589. https://doi.org/10.3389/fsoil.2022.821589

    Article  Google Scholar 

  • Sumbul, A., Ansari, R. A., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27(12), 3634–3640. https://doi.org/10.1016/j.sjbs.2020.08.004

    Article  CAS  Google Scholar 

  • Tarfeen, N., Nisa, K. U., Hamid, B., Bashir, Z., Yatoo, A. M., Dar, M. A., Mohiddin, F. A., Amin, Z., Ahmad, R. A., & Sayyed, R. Z. (2022). Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes, 10, 1358. https://doi.org/10.3390/pr10071358

    Article  CAS  Google Scholar 

  • Teja, A. R., Leona, G., Prasanth, J., Yatung, T., Singh, S., & Bhargav, V. (2023). Role of plant growth–promoting rhizobacteria in sustainable agriculture. In Advanced Microbial Technology for Sustainable Agriculture and Environment (pp. 175-197). Academic Press.

  • Tiedje, J. M., Bruns, M. A., Casadevall, A., Criddle, C. S., Eloe-Fadrosh, E., Karl, D. M., Nguyen, N. K., & Zhou, J. (2022). Microbes and climate change: A research prospectus for the future. mBio, 13(3), e0080022. https://doi.org/10.1128/mbio.00800-22

    Article  Google Scholar 

  • Veresoglou, S. D., & Rillig, M. C. (2012). Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 8(2), 214–217.

    Article  Google Scholar 

  • Vilar-Sanz, A., Puig, S., García-Lledó, A., Trias, R., Balaguer, M. D., Colprim, J., & Bañeras, L. (2013). Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell. PLoS One, 8(5), e63460. https://doi.org/10.1371/journal.pone.0063460

    Article  CAS  Google Scholar 

  • Vurukonda, S. S. K. P., Vardharajula, S., & Shrivastava, M. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003

    Article  Google Scholar 

  • Wagner, D. (2008). Microbial communities and processes in Arctic permafrost environments. In P. Dion & C. S. Nautiyal (Eds.), Microbiology of extreme soils (pp. 133–154). Springer.

    Chapter  Google Scholar 

  • Wallenstein, M. D. (2017). Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere, 3, 230–232. https://doi.org/10.1016/j.rhisph.2017.04.004

    Article  Google Scholar 

  • Yadav, A. N., Verma, P., Singh, B., Chauahan, V. S., Suman, A., & Saxena, A. K. (2017). Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Advances in Biotechnology & Microbiology, 5(5), 555671. https://doi.org/10.19080/AIBM.2017.05.5556671

    Article  Google Scholar 

  • Zheng, X., Xuehao, M., Zhao, M., Sun, L., Rong, L., Zhang, B., Fan, F., Zhang, F., Shu, C., Shi, X., Zhao, D., & Fu, J. (2023). Using organo–mineral complex material to prevent the migration of soil Cd and As into crops: An agricultural practice and chemical mechanism study. Science of The Total Environment, 883, 163662. https://doi.org/10.1016/j.scitotenv.2023.163662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dean, College of Agriculture, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Ganj Basoda, Vidisha, Madhya Pradesh, India, and Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China, for providing the necessary facilities for this study, as well as organizations to which each author are associated.

Author information

Authors and Affiliations

Authors

Contributions

Aradhna Kumari, Munmun Dash, Santosh Kumar Singh, and M. Jagadesh: conceptualization, methodology, software, writing — review and editing, data curation, writing — original draft. Bhupendra Mathpal: methodology, writing — review and editing. P. K. Mishra and Sunil Lumar Pandey: methodology, software, writing — review and editing. Krishan K. Verma: supervision, conceptualization, writing — review and editing.

Corresponding authors

Correspondence to Santosh Kumar Singh or Krishan K. Verma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Dash, M., Singh, S.K. et al. Soil microbes: a natural solution for mitigating the impact of climate change. Environ Monit Assess 195, 1436 (2023). https://doi.org/10.1007/s10661-023-11988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11988-y

Keywords

Navigation