Skip to main content

Advertisement

Log in

Soil arthropod community responses to restoration in areas impacted by iron mining tailings deposition after Fundão dam failure

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In 2015, the failure of the Fundão dam in Mariana, Brazil released ~43 million m3 of iron mining tailings into the environment. Despite restoration initiatives in the following years, few studies—and most focused on revegetation—have evaluated the effectiveness of the restoration process in areas impacted by the disaster. We aimed to evaluate the responses of the arthropod community in areas impacted by iron mining tailings deposition from the Fundão dam that is in the restoration process. We defined sampling units in the riparian zone of the Gualaxo do Norte River, which is under restoration, and in a native not impacted riparian zone. We collected soil arthropods using pitfall traps and sampled environmental variables in the same sites. We used generalize least squares models (GLS) to test if the restored areas already presented values of arthropod diversity and functional group abundance similar to the reference area and to test which environmental variables are influencing arthropod diversity. We also tested how large the differences of arthropod community composition between the study areas and used the index of indicator species (IndVal) to verify which species could be used as an indicator of reference or restoration areas. The diversity of arthropods and the functional groups of detritivores and omnivores were higher in the native riparian zone. Understory density, soil density, organic matter content, and microbial biomass carbon were the environmental variables that significantly explained the diversity and species composition of arthropods. We show that restoration areas still have different soil arthropod diversity values and community composition when compared to reference areas. Evaluating the response of the arthropod community to the restoration process and long-term monitoring are essential to achieve a satisfactory result in this process and achieve a self-sustaining ecosystem.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Alef, K. (1995). Field methods. In K. Alef & P. Nannipieri (Eds.), Methods in Applied Soil Microbiology and Biochemistry., Academic Press (pp. 463–490).

    Chapter  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Arenhardt, T. C. P., Vitorino, M. D., & Martins, S. V. (2021). Insecta and Collembola as bioindicators of ecological restoration in the Ombrophilous Dense Forest in Southern Brazil. Floresta e Ambiente, 28. https://doi.org/10.1590/2179-8087-FLORAM-2021-0008

  • Atkinson, J., Brudvig, L. A., Mallen-Cooper, M., Nakagawa, S., Moles, A. T., & Bonser, S. P. (2022). Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta-analysis. Ecology Letters, 25(7), 1725–1737. https://doi.org/10.1111/ele.14025

    Article  Google Scholar 

  • Baccaro, F. B., Feitosa, R. M., Fernández, F., Fernandes, I. O., Izzo, T. J., Souza, J. D., & Solar, R. (2015). Guia para os gêneros de formigas do Brasil (p. 388). Editora INPA. https://doi.org/10.5281/zenodo.32912

    Book  Google Scholar 

  • Barrios, E. (2007). Soil biota, ecosystem services, and land productivity. Ecological Economics, 64(2), 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004

    Article  Google Scholar 

  • Bates, D. (2014). Penalized least squares versus generalized least squares representations of linear mixed models. R package version, 1–1. http://cran.nexr.com/web/packages/lme4/vignettes/PLSvGLS.pdf

  • Batista, E. R., Franco, A. J., Silva, A. P. V., Silva, J. A. G. F., Tavares, D. S., Souza, J. K., Silva, A. O., Barbosa, M. V., Santos, J. V., & Carneiro, M. A. (2022). Organic substrate availability and enzyme activity affect microbial-controlled carbon dynamics in areas disturbed by a mining dam failure. Applied Soil Ecology, 169, 104169. https://doi.org/10.1016/j.apsoil.2021.104169

    Article  Google Scholar 

  • Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In I. Cohen, Y. Huang, J. Chen, & J. Benesty (Eds.), Noise reduction in speech processing. Springer. https://doi.org/10.1007/978-3-642-00296-0_5

    Chapter  Google Scholar 

  • Bohac, J. (1999). Staphylinid beetles as bioindicators. Agriculture, Ecosystems & Environment, 74, 357–372. https://doi.org/10.1016/S0167-8809(99)00043-2

    Article  Google Scholar 

  • Borges, F. L. G., da Rosa Oliveira, M., de Almeida, T. C., Majer, J. D., & Garcia, L. C. (2021). Terrestrial invertebrates as bioindicators in restoration ecology: A global bibliometric survey. Ecological Indicators, 125, 107458. https://doi.org/10.1016/j.ecolind.2021.107458

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Braga, R. F., Korasaki, V., Andresen, E., & Louzada, J. (2013). Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS One, 8(2), e57786. https://doi.org/10.1371/journal.pone.0057786

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 11–33. https://doi.org/10.1017/S0021859600021572

    Article  CAS  Google Scholar 

  • Brescovit, A. D., & Araneae. (2002). In E. Flórez-Daza (Ed.), Amazonian Arachnida and Myriapoda (pp. 303–344). Pensoft.

    Google Scholar 

  • Cammeraat, E. L. H., & Risch, A. C. (2008). The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 132(4), 285-294. https://doi.org/10.1111/j.1439-0418.2008.01281.x

  • Campanharo, Í. F., Martins, S. V., Villa, P. M., Kruschewsky, G. C., Dias, A. A., & Nabeta, F. H. (2021). Effects of forest restoration techniques on community diversity and aboveground biomass on area affected by mining tailings in Mariana, Southeastern Brazil. Research in Ecology, 2(4). https://pdfs.semanticscholar.org/151b/4cc4577b6473f3826d8dd8cc0a7650be50bf.pdf

  • Carmo, F. F., Kamiro, L. H., Junior, R. T., Campos, I. C., Carmo, F. F., Silvino, G., Castro, K. J., Mauro, M. L., Rodrigues, N. U., Miranda, M. P., & Pinto, C. E. (2017). Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15(3), 145–151. https://doi.org/10.1016/j.pecon.2017.06.002

    Article  Google Scholar 

  • Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93, 2533–2547. https://doi.org/10.1890/11-1952.1

    Article  Google Scholar 

  • Chao, A., Chiu, C. H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297-324. https://doi.org/10.1146/annurev-ecolsys-120213-091540

  • Cleasby, I. R., & Nakagawa, S. (2011). Neglected biological patterns in the residuals. Behavioral Ecology and Sociobiology, 65(12), 2361–2372. https://doi.org/10.1007/s00265-011-1254-7

    Article  Google Scholar 

  • Cole, R. J., Holl, K. D., Zahawai, R. A., Wickey, P., & Townsend, A. R. (2016). Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution, 6(15), 5158–5168. https://doi.org/10.1002/ece3.2220

    Article  Google Scholar 

  • Cordeiro, J., Gomes, A. R., Santos, C. H. B., Rigobelo, E. C., Baptista, M. B., Moura, P. M., & Scotti, M. R. (2022). Rehabilitation of the Doce River Basin after the Fundão dam collapse: What has been done, what can be done and what should be done? River Research and Applications, 38(2), 194–208. https://doi.org/10.1002/rra.3894

    Article  Google Scholar 

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Dunn, R. R., Parker, C. R., & Sanders, N. J. (2007). Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages. Biological Journal of the Linnean Society, 91(2), 191–201. https://doi.org/10.1111/j.1095-8312.2007.00783.x

    Article  Google Scholar 

  • Fagan, W. F. (1997). Omnivory as a stabilizing feature of natural communities. The American Naturalist, 150, 554–567. https://doi.org/10.1086/286081

    Article  CAS  Google Scholar 

  • Fernandes, G. W., Goulart, F. F., Ranieri, B. D., Coelho, M. S., Dales, K., Boesche, N., Bustamante, M., Carvalho, F. A., Carvalho, D. C., Dirzo, R., Fernandes, S., Galetti, P. M., Millian, V. E. G., Mielke, C., Ramirez, J. L., Neves, A., Rogass, C., Ribeiro, S., & Soares-Filho, B. (2016). Deep into the mud: Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação, 14, 35–45. https://doi.org/10.1016/j.ncon.2016.10.003

    Article  Google Scholar 

  • Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalcik, J., & Rehounková. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44(1), 109–121. https://doi.org/10.1016/j.ejsobi.2007.09.002

    Article  Google Scholar 

  • Garcia, L. C., Ribeiro, D. B., Roque, F. O., Quintero, J. M., & Laurance, W. F. (2017). Brazil's worst mining disaster: Corporations must be compelled to pay the actual environmental costs. Ecological Applications, 27, 5–9. https://doi.org/10.1002/eap.1461

    Article  Google Scholar 

  • Gomes, A. R., Antão, A., Santos, A. G., Lacerda, T. J., Medeiros, M. B., Saenz, L. A. I., Alvarenga, S., Santos, C. H., Rigobelo, E., & Scotti, M. R. (2021). Rehabilitation of a riparian site contaminated by tailings from the Fundão Dam, Brazil, using different remediation strategies. Environmental Toxicology and Chemistry, 40(8), 2359–2373. https://doi.org/10.1002/etc.5075

    Article  CAS  Google Scholar 

  • Gomes, L. C., Chippari-Gomes, A. R., Miranda, T. O., Pereira, T. M., Merçon, J., Davel, V. C., Barbosa, B. V., Pereira, A. C. H., Frossard, A., & Ramos, J. P. L. (2018). Genotoxicity effects on Geophagus brasiliensis fish exposed to Doce River water after the environmental disaster in the city of Mariana, MG, Brazil. Brazilian Journal of Biology, 79, 659–664. https://doi.org/10.1590/1519-6984.188086

    Article  Google Scholar 

  • Gonçalves, F., Nunes, C., Carlos, C., López, Á., Oliveira, I., Crespí, A., Teixeira, B., Pinto, R., Costa, C. A., & Torres, L. (2020). Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards? Agriculture, Ecosystems & Environment, 294, 106863. https://doi.org/10.1016/j.agee.2020.106863

    Article  CAS  Google Scholar 

  • Graham, J. H., Hughie, H. H., Jones, S., Wrinn, K., Krzysik, A. J., Duda, J. J., Freeman, D. C., Emlen, J. M., Zak, J. C., Kovacic, D. A., Chamberlin-Graham, C., & Balbach, H. (2004). Habitat disturbance and the diversity and abundance of ants (Formicidae) in the Southeastern FallLine Sandhills. Journal of Insect Science, 4, 1–15. https://doi.org/10.1093/jis/4.1.30

    Article  Google Scholar 

  • Herrick, J. E., Schuman, G. E., & Rango, A. (2006). Monitoring ecological processes for restoration projects. Journal for Nature Conservation, 14(3–4), 161–171. https://doi.org/10.1016/j.jnc.2006.05.001

    Article  Google Scholar 

  • Hohbein, R. R., & Conway, C. J. (2018). Pitfall traps: A review of methods for estimating arthropod abundance. Wildlife Society Bulletin, 42, 597–606. https://doi.org/10.1002/wsb.928

    Article  Google Scholar 

  • Hossner, L. R., & Hons, F. M. (1992). Reclamation of mine tailings. In R. Lal & B. A. Stewart (Eds.), Soil Restoration. Advances in Soil Science (Vol. 17). Springer. https://doi.org/10.1007/978-1-4612-2820-2_10

    Chapter  Google Scholar 

  • Hoye, T. T., & Culler, L. E. (2018). Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biology, 41(8), 1523–1529. https://doi.org/10.1007/s00300-018-2370-x

    Article  Google Scholar 

  • Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  • Humbert, J. Y., Delley, S., & Arlettaz, R. (2021). Grassland intensification dramatically impacts grasshoppers: Experimental evidence for direct and indirect effects of fertilisation and irrigation. Agriculture, Ecosystems & Environment, 314, 107412. https://doi.org/10.1016/j.agee.2021.107412

    Article  Google Scholar 

  • Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis- IBAMA. (2015). Laudo Técnico Preliminar: Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Disponível em. http://www.ibama.gov.br/phocadownload/barragemdefundao/laudos/laudo_tecnico_preliminar_Ibama.pdf. Acesso em: 07 jan. 2021.

  • Islam, K., & Murakami, S. (2021). Global-scale impact analysis of mine tailings dam failures: 1915–2020. Global Environmental Change, 70, 102361. https://doi.org/10.1016/j.gloenvcha.2021.102361

    Article  Google Scholar 

  • Kenyeres, Z. (2020). Rapid succession of orthopteran assemblages driven by patch size and connectivity. Rangeland Ecology & Management, 73(6), 838–846. https://doi.org/10.1016/j.rama.2020.07.004

    Article  Google Scholar 

  • Kok, O. B., & Louw, S. V. (2000). Avian and mammalian predators of Orthoptera in semi-arid regions of South Africa. South African Journal of Wildlife Research, 30, 122–128 https://hdl.handle.net/10520/EJC117100

    Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology. Oregon State University.

    Google Scholar 

  • Kremem, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., & Sanjayan, M. A. (1993). Terrestrial arthropod assemblages: Their use in conservation planning. Conservation Biology, 796–808 https://www.jstor.org/stable/2386811

  • Lessard, J. P., Sackett, T. E., Reynolds, W. N., Fowler, D. A., & Sanders, N. J. (2011). Determinants of the detrital arthropod community structure: The effects of temperature and resources along an environmental gradient. Oikos, 120(3), 333–343. https://doi.org/10.1111/j.1600-0706.2010.18772.x

    Article  Google Scholar 

  • Lewinsohn, T. M., Novotny, V., & Basset, Y. (2005). Insects on plants: Diversity of herbivore assemblages revisited. Annual Review of Ecology, Evolution, and Systematics, 597–620. https://www.jstor.org/stable/30033818

  • Majer, J. D. (1996). Ant recolonization of rehabilitated bauxite mines at Trombetas, Pará, Brazil. Journal of Tropical Ecology, 12(2), 257-273. https://doi.org/10.1017/S0266467400009445

  • Marsden, S. J., Fielding, A. H., Mead, C., & Hussin, M. Z. (2002). A technique for measuring the density and complexity of understorey vegetation in tropical forests. Forest Ecology and Management, 165(1-3), 117–123. https://doi.org/10.1016/S0378-1127(01)00653-3

    Article  Google Scholar 

  • Martins, S. V., Villa, P. M., Nabeta, F. H., Silva, L. F., Kruschewsky, G. C., & Dias, A. A. (2021). Study on site preparation and restoration techniques for forest restoration in mining tailings of Mariana, Brazil. Research in Ecology, 2. https://doi.org/10.30564/re.v2i4.2610

  • Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. https://mirror.marwan.ma/cran/web/packages/AICcmodavg/vignettes/AICcmodavg.pdf

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4 by North Carolina soil testing laboratories (p. 195). University of North Carolina.

    Google Scholar 

  • Meloni, F., & Varanda, E. M. (2015). Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests. Restoration Ecology, 23(5), 690–697. https://doi.org/10.1111/rec.12236

    Article  Google Scholar 

  • Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054

    Article  Google Scholar 

  • Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., & Calle, Z. (2012). Leaf-cutting ants revisited: Towards rational management and control. International Journal of Pest Management, 58(3), 225–247. https://doi.org/10.1080/09670874.2012.663946

    Article  Google Scholar 

  • Moore, J. C., Walter, D. E., & Hunt, H. W. (1988). Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual Review of Entomology, 33(1), 419–435. https://doi.org/10.1146/annurev.en.33.010188.002223

    Article  Google Scholar 

  • Myers, N., Mittermeier, R., Mittermeier, C., et al. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • Nakamura, A., Proctor, H., & Catterall, C. P. (2003). Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration, 4, S20–S28. https://doi.org/10.1046/j.1442-8903.4.s.3.x

    Article  Google Scholar 

  • Nascimento, F. D. S., Toledo, A. M. O., Pimenta, M. D. P., Resende, C. F. D., Peixoto, P. H. P., Zimerer, A., & Lopes, J. F. S. (2021). Does mining waste concentration in the soil interfere with leaf selection by Acromyrmex subterraneus (Formicidae)?. Biotropica, 53(2), 487-495. https://doi.org/10.1111/btp.12892

  • Nkem, J. N., De Bruyn, L. L., Grant, C. D., & Hulugalle, N. R. (2000). The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia, 44(5), 609-621. https://doi.org/10.1078/S0031-4056(04)70075-X

  • Odum, E. P., Connell, C. E., & Davenport, L. B. (1962). Population energy-flow of 3 primary consumer components of old-field ecosystems. Ecology, 43–88. https://www.jstor.org/stable/1932043

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. T., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community ecology package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan

  • Omachi, C. Y., Siani, S. M., Chagas, F. M., Mascagni, M. L., Cordeiro, M., Garcia, G. D., Thompson, C. C., Siegle, E., & Thompson, F. L. (2018). Atlantic Forest loss caused by the world´ s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sensing Applications: Society and Environment, 12, 30–34. https://doi.org/10.1016/j.rsase.2018.08.003

    Article  Google Scholar 

  • Pacheco, R., Vasconcelos, H. L., Groc, S., Camacho, G. P., & Frizzo, T. L. M. (2013). The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodiversity Conservation, 22, 983–997. https://doi.org/10.1007/s10531-013-0463-y

    Article  Google Scholar 

  • Pais, M. P., & Varanda, E. M. (2010). Arthropod recolonization in the restoration of a semideciduous forest in southeastern Brazil. Neotropical Entomology, 39, 198–206. https://doi.org/10.1590/S1519-566X2010000200009

    Article  Google Scholar 

  • Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Semenyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97. https://doi.org/10.1016/j.ejsobi.2017.09.001

    Article  Google Scholar 

  • Prasad, S., Malav, L. C., Choudhary, J., Kannojiya, S., Kundu, M., Kumar, S., & Yadav, A. N. (2021). Soil microbiomes for healthy nutrient recycling. In A. N. Yadav, C. Singh, & N. Yadav (Eds.), Current trends in microbial biotechnology for sustainable agriculture (pp. 1–21). Springer. https://doi.org/10.1007/978-981-15-6949-4

    Chapter  Google Scholar 

  • Pressler, Y., Moore, J. C., & Cotrufo, M. F. (2018). Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128(3), 309–327. https://doi.org/10.1111/oik.05738

    Article  Google Scholar 

  • Queiroz, A., Rabello, A. M., Lasmar, C. J., Cuissi, R. G., Canedo-Júnior, E. O., Schmidt, F. A., & Ribas, C. R. (2021). Diaspore removal by ants does not reflect the same patterns of ant assemblages in mining and rehabilitation areas. Neotropical Entomology, 50, 335–348. https://doi.org/10.1007/s13744-021-00861-7

    Article  Google Scholar 

  • R Development Core Team. (2020). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

  • Rafael, J. A., Melo, G. A. R., de Carvalho, C. J. B., Casari, A. S., & Constantino, R. (2012). Insetos do Brasil: Diversidade e Taxonomia. Holos Editora.

    Google Scholar 

  • Randlkofer, B., Obermaier, E., Hilker, M., & Meiners, T. (2010). Vegetation complexity—the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Applied Ecology, 11(5), 383-395. https://doi.org/10.1016/j.baae.2010.03.003

  • Rasband, W. S. (2006). ImageJ. US National Institutes of Health. http://rsb.info.nih.gov/ij

  • Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3), 380–385. https://doi.org/10.2307/2413572

    Article  Google Scholar 

  • Ribeiro-Neto, J. D., Arnan, X., Tabarelli, M., Leal, I., & R. (2016). Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity Conservation, 25, 943–956. https://doi.org/10.1007/s10531-016-1099-5

    Article  Google Scholar 

  • Roberts, D. W. (2019). Labdsv: Ordination and multivariate analysis for Ecology. R Package Version, 2.0–2.1. http://cran.r-project.org/package=labdsv

  • Rodrigues, R. R., Lima, R. A., Gandolfi, S., & Nave, A. G. (2009). On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, 142(6), 1242–1251. https://doi.org/10.1016/j.biocon.2008.12.008

    Article  Google Scholar 

  • Sanabria, C., Lavelle, P., & Fonte., S. J. (2014). Ants as indicators of soil-based ecosystem service in agroecosystems of the Colombian Llanos. Applied Soil Ecology, 84, 24–30. https://doi.org/10.1016/j.apsoil.2014.07.001

    Article  Google Scholar 

  • Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a mine dam rupture in Brazil: Prospects for remediation. Journal of Environmental Quality, 48(2), 439–449. https://doi.org/10.2134/jeq2018.04.0168

    Article  CAS  Google Scholar 

  • Scoriza, R. N., Pereira, M. G., Pereira, G. H. A., Machado, D. L., & Silva, E. M. R. (2017). Métodos para coleta e análise de serrapilheira aplicados à ciclagem de nutrientes. Série Técnica Floresta e Ambiente, 2, 1–18 https://app.periodikos.com.br/article/587fb8330e8825696bb65ffe/pdf/stfloram-2-1.pdf

    Google Scholar 

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Filho, W. R. P., Barbosa, F., Cerchiaro, G., Silva, F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  Google Scholar 

  • Silva, A. C., Cavalcante, C. D., Fabris, J. D., Júnior, R. F., Barral, U. M., Farnezi, M. M. M., Viana, A. J. S., Ardisson, J. D., Fernandez-Outon, L. E., Lara, L. R. S., Stumpf, H. O., Barbosa, J. B. S., & da Silva, L. C. (2016). Características químicas, mineralógicas e físicas do material acumulado em terraços fluviais, originado do fluxo de lama proveniente do rompimento de barragem de rejeitos de mineração de ferro em Bento Rodrigues, Minas Gerais, Brasil. Revista Espinhaço| UFVJM, 44–53. https://doi.org/10.5281/zenodo.3957942

  • Silva, A. O., Guimarães, A. A., Lopez, B. D. O. et al. (2021) Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure. Environmental Monitoring Assessment, 193, 462. https://doi.org/10.1007/s10661-021-09234-4

  • Stašiov, S., Litavský, J., Majzlan, O., Svitok, M., & Fedor, P. (2021). Influence of selected environmental parameters on rove beetle (Coleoptera: Staphylinidae) communities in Central European floodplain forests. Wetlands, 41, 1–13. https://doi.org/10.1007/s13157-021-01496-5

    Article  Google Scholar 

  • Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal River of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. https://doi.org/10.1111/ele.12277

    Article  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análise de solo. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/194786/1/Pt-5-Cap-1-Micromorfologia-do-solo.pdf

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análise de solo.

  • Termo de Transação e Ajustamento de Conduta (TTAC) entre União/Estados de MG e ES/Samarco/Vale/BHP. (2016) p. 137. Disponível em. http://www.ibama.gov.br/cif. Acesso em: 15 de mar 2021.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vasconcelos, H. L., & Cherrett, J. M. (1997). Leaf-cutting ants and early forest regeneration in central Amazonia: effects of herbivory on tree seedling establishment. Journal of Tropical Ecology, 13(3), 357-370. https://doi.org/10.1017/S0266467400010567

  • Vogel, H. F., Campos, J. B., & Bechara, F. C. (2015). Early bird assemblages under different subtropical forest restoration strategies in Brazil: Passive, nucleation and high diversity plantation. Tropical Conservation Science, 8, 912–939.

    Article  Google Scholar 

  • Wali, M. K. (1999). Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213(1), 195–220. https://doi.org/10.1023/A:1004475206351

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. (1934). A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Weyer, J., Weinberger, J., & Hochkirch, A. (2012). Mobility and microhabitat utilization in a flightless wetland grasshopper, Chorthippus montanus (Charpentier, 1825). Journal Insect Conservation, 16, 379–390. https://doi.org/10.1007/s10841-011-9423-6

    Article  Google Scholar 

  • Wong, M. K., Guénard, B., & Lewis, O. T. (2019). Trait-based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999–1022. https://doi.org/10.1111/brv.12488

    Article  Google Scholar 

  • Zanchi, C. S., Batista, É. R., Silva, A. O., Barbosa, M. V., Pinto, F. A., dos Santos, J. V., & Carneiro, M. A. C. (2021). Recovering soils affected by iron mining tailing using herbaceous species with mycorrhizal inoculation. Water, Air, & Soil Pollution, 232, 1–13. https://doi.org/10.1007/s11270-021-05061-y

    Article  CAS  Google Scholar 

  • Zettler, J. A., Taylor, M. D., Allen, C. R., & Spira, T. P. (2004). Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 97(3), 513–518. https://doi.org/10.1603/0013-8746(2004)097[0513:COFCFN]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and the Minas Gerais State Research Foundation (FAPEMIG-APQ-01661-16) for the financial support and scholarships granted to the authors. We also thank Mateus de Melo Dias for the help in the map elaboration, Antonio Domigos Brescovit for the help in identifying the spiders, and Júlio Neil Cassa Louzada for permitting the use of Laboratório de Ecologia e Conservação de Invertebrados (LECIN) for the arthropods triage and identification process.

Funding

This research was financed by grants from the Minas Gerais State Research Foundation (FAPEMIG), National Council for Scientific and Technological Development (CNPq), and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

The experiment was mainly planned and designed by LGR and MACC, and all authors were involved in the designing of the study: LGR (conceptualization, methodology, investigation, data analysis, and writing (original draft preparation)); AOS (collecting all the data, methodology, and writing (review and editing)); KAV (collecting all the data, methodology, and writing (review and editing)); ESSF (collecting all the data, methodology, and writing (review and editing)); JVS (collecting all the data, methodology, and writing (review and editing)); ESSF (collecting all the data, methodology, and writing (review and editing)); CAN (conceptualization, methodology, supervision, and writing (review and editing)); and MACC (conceptualization, methodology, investigation, analysis of the data, project administration, supervision, and writing (review and editing)). All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marco Aurélio Carbone Carneiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2469 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.G., Silva, A.O., Vaz, K.A. et al. Soil arthropod community responses to restoration in areas impacted by iron mining tailings deposition after Fundão dam failure. Environ Monit Assess 195, 1299 (2023). https://doi.org/10.1007/s10661-023-11843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11843-0

Keywords

Navigation