Skip to main content

Advertisement

Log in

Soil Conservation Service-Curve Number method-based historical analysis of long-term (1936–2016) temporal evolution of city-scale potential natural groundwater recharge from precipitation: case study Algiers (Algeria)

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Managing groundwater resources in urban areas requires an adequate understanding and assessment of urban hydrogeological systems (structure, components, connections, and imposed conditions) as a part of a larger, dynamically evolving environment. Urbanization and climate change are amongst the widely recognized signs of such a continuous evolution. Within this context, the present study gives a quantitative assessment of the impact of these two factors threatening water resources in urban environments. The Soil Conservation Service-Curve Number (SCS-CN) method is used to conduct a long-term quantitative analysis of the temporal evolution of the potential natural groundwater recharge from precipitation at the scale of Algiers city for an 80-year-long period (1936–2016). The length of the study period allowed us to account for and analyze important changes in urban settings and climatic conditions within the study zone. Overall, two trend shifts over three distinct periods were found to characterize the temporal evolution of precipitation, several climate change indicators defined for the study, and the potential natural aquifer recharge. A strong, approximately 1:4, linear correlation between the estimated city-scale potential natural aquifer recharge and precipitation was observed for the studied period (R2 = 0.748). Moreover, even though the urban area has known a rapid (2nd order polynomial) increase from 1936 to 2016, climate change (accounted for via the changes in precipitation regime) impacted the city-scale potential natural groundwater recharge with higher magnitudes than urbanization. Finally, the computed climate change indicators show that starting in the mid-1980s, Algiers has started receiving less precipitations, with fewer heavy rain events and longer dry condition periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ansari, T. A., Katpatal, Y. B., & Vasudeo, A. D. (2016). Spatial evaluation of impacts of increase in impervious surface area on SCS-CN and runoff in Nagpur urban watersheds, India. Arabian Journal of Geosciences, 9, 702. https://doi.org/10.1007/s12517-016-2702-5

    Article  CAS  Google Scholar 

  • Attard, G., Winiarski, T., Rossier, Y., et al. (2016). Review : Impact of underground structures on the flow of urban groundwater. Hydrogeology Journal, 24, 5–19. https://doi.org/10.1007/s10040-015-1317-3

    Article  Google Scholar 

  • Benallal, K., & Ourabia, K. (1988). Monographie géologique et géotechnique de la région d'Alger (Geological and geotechnical monograh for Algiers). OPU, Algiers.

  • Bouchachi, B., & Zhong, Y. (2017). Monitoring urban land cover/land use change in Algiers city using landsat images (1987–2016). Proceeding the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7, 1083–1090.

  • Bouderbala, A. (2019). The impact of climate change on groundwater resources in coastal aquifers: Case of the alluvial aquifer of Mitidja in Algeria. Environment and Earth Science, 78, 698. https://doi.org/10.1007/s12665-019-8702-5

    Article  CAS  Google Scholar 

  • Bouderbala, A., & Hadj Mohamed, N. (2020). Water resources in coastal aquifers of Algeria face climate variability: Case of alluvial aquifer of Mitidja in Algeria. In: Negm AM, Bouderbala A, Chenchouni H, Barceló D (eds) Water Resources in Algeria - Part I. The Handbook of Environmental Chemistry, 97. Springer, Cham. https://doi.org/10.1007/10.1007/698_2020_529

  • Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015a). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest City. Romania. Hydrogeol J, 23(3), 437–450. https://doi.org/10.1007/s10040-014-1220-3

    Article  Google Scholar 

  • Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015b). General aspects on urban hydrogeology and highlights from Bucharest (Romania). Environmental Engineering & Management Journal, 14(6), 1279–1285. https://doi.org/10.30638/eemj.2015.138

  • Brusten, A., Boukhemacha, M. A., Gogu, C. R., Bica, I., & Gaitanaru, D. (2013). Numerical parametrical study on the barrier effect in unconfined aquifers. Proceeding: 13th SGEM GeoConference on Science and Technolgy in Geology, Exploration and Mining, 2, 287–294. https://doi.org/10.5593/SGEM2013/BA1.V2/S02.038

    Article  Google Scholar 

  • Cooley, H., Christian-Smith, J., Gleick, P. H., Allen, L., & Cohen, M. (2012). Climate change and transboundary waters. In H. Gleick (Ed.), The world’s water (Vol. 7, pp. 1–22). Island Press.

    Google Scholar 

  • DEMRH. (1973). Carte Hydrogéologique de la région d'Alger au 1/200000 – notice explicative (hydrogeological map of Algiers at the scale 1/200000 - explanation note). Direction des Études de Milieu et de la Recherche Hydraulique, Algiers (in French).

  • Derriche, Z., & Cheikh-Lounis, G. (2004). Geotechnical characteristics of the Plaisancian marls of Algiers. Bulletin of Engineering Geology and the Environment, 63, 367–378. https://doi.org/10.1007/s10064-004-0246-5

    Article  Google Scholar 

  • Eshtawi, T., Evers, M., & Tischbein, B. (2015). Potential impacts of urban area expansion on groundwater level in the Gaza Strip: A spatial-temporal assessment. Arabian Journal of Geosciences, 8(12), 10565–10584. https://doi.org/10.1007/s12517-015-1971-8

    Article  Google Scholar 

  • GIZ/BRG/OSS. (2016). CREM Project: Evaluation study of the water sector in Algeria, Inventory. Final report (in French).

  • Gogu, C. R., Boukhemacha, M. A., Gaitanaru, D., & Moraru, I. (2019). Interaction between city subsurface infrastructure and groundwater. In: Mannina G (ed) New trends in urban drainage modelling. UDM 2018. Green Energy and Technology. Springer, Cham, pp. 219–223. https://doi.org/10.1007/978-3-319-99867-1_36

  • Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. M., Schulte, R. P. O., Fernandes, R. B. A., & Fernandes-Filho, E. I. (2021). Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. Journal of Hydrology, 594, 1–12. https://doi.org/10.1007/10.1016/j.jhydrol.2020.125650

    Article  Google Scholar 

  • Grimmond, C. S. B., & Oke, T. R. (1999). Evapotranspiration rates in urban areas. Impacts of urban growth on surface water and groundwater quality. Proceedings of lOGO 99 Symposium HSS. Birmingham, July J999). IAHS Publ. no. 259.1999.

  • Grimmond, C. S. B., & Oke, T. R. (2002). Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology, 41, 792–810. https://doi.org/10.1175/1520-0450(2002)041%3c0792:THFIUA%3e2.0.CO;2

    Article  Google Scholar 

  • Grison, C., Koop, S., Eisenreich, S., et al. (2023). Integrated water resources management in cities in the world: Global challenges. Water Resources Management, 37, 2787–2803. https://doi.org/10.1007/10.1007/s11269-023-03475-3

    Article  Google Scholar 

  • INSID. (2011). Database of the national institute of soils, irrigation and drainage, Algiers.

  • JICA. (2006). Seismic microzoning study of Algiers, Algeria. Final report, vol. IV (in French).

  • La Vigna, F. (2022). Review: Urban groundwater issues and resource management, and their roles in the resilience of cities. Hydrogeology Journal, 30, 1657–1683. https://doi.org/10.1007/s10040-022-02517-1

    Article  Google Scholar 

  • Lerner, D. N. (1990). Groundwater recharge in urban areas. Atmospheric Environment Part B-Urban Atmosphere, 24(1), 29–33. https://doi.org/10.1016/0957-1272(90)90006-G

    Article  Google Scholar 

  • McDonough, L. K., Santos, I. R., Andersen, M. S., et al. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11, 1279. https://doi.org/10.1038/s41467-020-14946-1

    Article  CAS  Google Scholar 

  • Minnery, J. R., & Smith, D. I. (1996). Climatic change, flooding and urban infrastructure. In W. J. Bouma, G. I. Pearman, & M. R. Manning (Eds.), Greenhouse: Coping with climate change (pp. 235–247). CSIRO Publishing.

    Google Scholar 

  • Minnig, M., Moeck, C., Radny, D., & Schirmer, M. (2018). Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. Journal of Hydrology, 563, 1135–1146. https://doi.org/10.1016/j.jhydrol.2017.09.058

    Article  Google Scholar 

  • Mishra, S. K., & Singh, V. P. (2003). Soil Conservation Service Curve Number (SCS-CN) methodology. Springer, Dordrecht, 516p. https://doi.org/10.1007/978-94-017-0147-1

  • Naik, P. K., Tambe, J. A., Dehury, B. N., & Tiwari, A. N. (2008). Impact of urbanization on the groundwater regime in a fast growing city in central India. Environmental Monitoring and Assessment, 146(1–3), 339–373. https://doi.org/10.1007/s10661-007-0084-6

    Article  CAS  Google Scholar 

  • Naimi-Ait-Aoudia, M., & Berezowska-Azzag, E. (2014). Household water consumption in Algiers facing population growth. Proceeding Water and Cities, Managing a Vital Relationship, ISOCARP, Sep 2014, Gdynia, Poland.

  • Ndehedehe, C. E. (2019). The water resources of tropical West Africa: Problems, progress, and prospects. Acta Geophysica, 67, 621–649. https://doi.org/10.1007/10.1007/s11600-019-00260-y

    Article  Google Scholar 

  • Pan, Y., Gong, H., Zhou, D., Li, X., & Nakagoshi, N. (2011). Impact of land use change on groundwater recharge in Guishui River Basin, China. Chinese Geographical Science, 21(6), 734–743. https://doi.org/10.1007/s11769-011-0508-7

    Article  Google Scholar 

  • Pang, X., Gu, Y., Launiainen, S., & Guan, M. (2022). Urban hydrological responses to climate change and urbanization in cold climates. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.153066

    Article  Google Scholar 

  • PARQUEXPO. (2010). Atlas of Algiers province. PARQUEXPO, Lisboa.

  • Peche, A., Graf, T., Fuchs, L., & Neuweiler, I. (2019). Physically based modeling of stormwater pipe leakage in an urban catchment. Journal of Hydrology, 573, 778–793. https://doi.org/10.1007/10.1016/j.jhydrol.2019.03.016

    Article  Google Scholar 

  • Pujades, E., Jurado, A., Carrera, J., Vázquez-Suñé, E., & Dassargues, A. (2016). Hydrogeological assessment of non-linear underground enclosures. Engineering Geology, 207, 91–102. https://doi.org/10.1016/j.enggeo.2016.04.012

    Article  Google Scholar 

  • Ramamurthy, P., & Bou-Zeid, E. (2014). Contribution of impervious surfaces to urban evaporation. Water Resources Research, 50(4), 2889–2902. https://doi.org/10.1002/2013WR013909

    Article  Google Scholar 

  • Rodell, M., Famiglietti, J. S., Wiese, D., et al. (2018). Emerging trends in global freshwater availability. Nature, 557, 651–659. https://doi.org/10.1038/s41586-018-0123-1

    Article  CAS  Google Scholar 

  • Rodriguez, F., Le Delliou, A.-L., Andrieu, H., & Gironás, J. (2020). Groundwater contribution to sewer network baseflow in an urban catchment-case study of Pin Sec catchment, Nantes, France. Water, 12(3), 689. https://doi.org/10.1007/10.3390/w12030689

    Article  Google Scholar 

  • Sahu, M. K., Shwetha, H. R., & Dwarakish, G. S. (2023). State-of-the-art hydrological models and application of the HEC-HMS model: A review. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-023-01704-7

    Article  Google Scholar 

  • Sathish, S., Chanu, S., Sadath, R., et al. (2022). Impacts of regional climate model projected rainfall, sea level rise, and urbanization on a coastal aquifer. Environmental Science and Pollution Research, 29, 33305–33322. https://doi.org/10.1007/s11356-021-18213-8

    Article  Google Scholar 

  • Selvaradjou, S. K., Montanarella, L., Spaargaren, O., & Dent, D. (2005). European Digital Archive of Soil Maps (EuDASM) - soil maps of Africa. Office for Official Publications of the European Communities.

    Google Scholar 

  • Singh, L., & Saravanan, S. (2020). Impact of climate change on hydrology components using CORDEX South Asia climate model in Wunna, Bharathpuzha, and Mahanadi, India. Environmental Monitoring and Assessment, 192, 678. https://doi.org/10.1007/s10661-020-08637-z

    Article  Google Scholar 

  • Shiklomanov, I. (1993). World fresh water resources. In: Gleick H (Ed.), Water in crisis: A guide to the world’s fresh water resources. New York: Oxford University Press, Oxford, pp. 13–14.

  • Shlomo, A., Blei, A. M., Parent, J., Lamson-Hall, P., Sánchez, N. G., Civco, D. L., Lei, R. Q., & Thom, K. (2016). Atlas of urban expansion -2016 Edition -Volume 1: Areas and Densities (p. 500p). NYU Urban Expansion Program at New York University.

    Google Scholar 

  • Smith, D. I. (1994). Flood damage estimation-a review of urban stage-damage curves and loss functions. Water South Africa, 20, 231–238.

    Google Scholar 

  • Suribabu, C. R., & Bhaskar, J. (2015). Evaluation of urban growth effects on surface runoff using SCS-CN method and green-Ampt infiltration model. Earth Science Informatics, 8(3), 609–626. https://doi.org/10.1007/s12145-014-0193-z

    Article  Google Scholar 

  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123–138. https://doi.org/10.3354/cr00953

    Article  Google Scholar 

  • Tsakiris, G. P., & Loucks, D. P. (2023). Adaptive water resources management under climate change: An introduction. Water Resources Management, 37, 2221–2233. https://doi.org/10.1007/10.1007/s11269-023-03518-9

    Article  Google Scholar 

  • USACE. (2016). Hydrologic modeling system HEC-HMS User’s manual, vol 1. Hydrol Eng Center, Davis, p. 598.

  • USDA. (1954). National engineering handbook. Soil Conservation Service US Department of Agriculture.

    Google Scholar 

  • USDA. (1971). National engineering handbook, Soil Conservation Service, US Department of Agriculture, Washington, D.C.

  • Vatanpour, N., Malvandi, A. M., Hedayati Talouki, H., et al. (2020). Impact of rapid urbanization on the surface water’s quality: A long-term environmental and physicochemical investigation of Tajan river, Iran (2007–2017). Environmental Science and Pollution Research, 27, 8439–8450. https://doi.org/10.1007/s11356-019-07477-w

    Article  CAS  Google Scholar 

  • Wang, X., Wang, K., Ding, J., et al. (2021). Predicting water quality during urbanization based on a causality-based input variable selection method modified back-propagation neural network. Environmental Science and Pollution Research, 28, 960–973. https://doi.org/10.1007/s11356-020-10514-8

    Article  CAS  Google Scholar 

  • Xuan, Y., Cao, Y., Tang, C., et al. (2020). Changes in dissolved inorganic carbon in river water due to urbanization revealed by hydrochemistry and carbon isotope in the Pearl River Delta, China. Environmental Science and Pollution Research, 27, 24542–24557. https://doi.org/10.1007/s11356-020-08454-4

    Article  CAS  Google Scholar 

  • Zafar, S., & Zaidi, A. (2019). Impact of urbanization on basin hydrology: A case study of the Malir Basin, Karachi, Pakistan. Regional Environmental Change, 19, 1815–1827. https://doi.org/10.1007/s10113-019-01512-9

    Article  Google Scholar 

  • Zaryab, A., Nassery, H. R., & Alijani, F. (2022). The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrogeology Journal, 30, 429–443. https://doi.org/10.1007/s10040-021-02445-6

    Article  Google Scholar 

  • Zhan, C., Zeng, S., Jiang, S., Wang, H., & Ye, W. (2014). An integrated approach for partitioning the effect of climate change and human activities on surface runoff. Water Resources Management, 28(11), 3843–3858. https://doi.org/10.1007/s11269-014-0713-0

    Article  Google Scholar 

  • Zhang, Y., Liu, S., Hou, X., Cheng, F., & Shen, Z. (2019). Landscape- and climate change-induced hydrological alterations in the typically urbanized Beiyun River basin, Beijing, China. Stochastic Environmental Research and Risk Assessment, 33(1), 149–168. https://doi.org/10.1007/s00477-018-1628-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted within the MESRS-PRFU project WatSedMan (grant contract Nr. A17N01ES160220220001) and implemented within the LMGCE laboratory of ENP. Special thanks are given to INSID, the National Water Resources Agency, and the team of the Urban Expansion project (in particular Dr. Alejandro BLEI) for their valuable data.

Funding

This work was supported by the Algerian Ministry of Higher Education and Scientific Research (grant contract Nr. A17N01ES160220220001).

Author information

Authors and Affiliations

Authors

Contributions

The author is the sole contributor.

Corresponding author

Correspondence to Mohamed Amine Boukhemacha.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhemacha, M.A. Soil Conservation Service-Curve Number method-based historical analysis of long-term (1936–2016) temporal evolution of city-scale potential natural groundwater recharge from precipitation: case study Algiers (Algeria). Environ Monit Assess 195, 1168 (2023). https://doi.org/10.1007/s10661-023-11815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11815-4

Keywords

Navigation