Skip to main content

Advertisement

Log in

Identifying the suitable managed aquifer recharge (MAR) strategy in an overexploited and contaminated river basin

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Managed aquifer recharge (MAR) is a promising adaptation measure to reduce vulnerability to climate change and hydrological variability. However, in areas where the basin is highly polluted, densely populated, and intensely cultivated, implementing suitable MAR strategies is a significant challenge. This study used a geographic information system-based multicriteria decision analysis (GIS-MCDA) approach to delineate the MAR potential sites using seven thematic layers describing surface and subsurface features. Further, basin-specific MAR approach was developed using information such as polluted water areas, canal network distribution for water supply, and cropping patterns. The results of this study indicate that only 17% of the area is highly suitable, while 54% and 29% were found moderately suitable and unsuitable for the MAR approach. Since most highly and moderately suitable sites were falling in the agricultural areas, agricultural-based MAR (AgMAR) was considered a preferred option. AquaCrop model for sugarcane was developed considering excess canal water supply during the grand growth stage to understand the AgMAR potential in the study area. It was observed that the potential recharge under normal irrigation scenarios varies from 135.5 to 272 mm/year, which can be increased through AgMAR up to 545 mm/year depending on the water availability for excess irrigations. This study provides an improved understanding of the parameters that should be considered for MAR site selection and post-GIS-MCDA analysis to assess the basin-specific MAR strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be provided by the corresponding author upon request.

References

  • Ahmed, A., Alrajhi, A., & Alquwaizany, A. S. (2021). Identification of groundwater potential recharge zones in flinders ranges, South Australia using remote sensing, GIS, and MIF techniques. Water, 13. https://doi.org/10.3390/w13182571

  • Ahmed, R., & Sajjad, H. (2018). Analyzing factors of groundwater potential and its relation with population in the lower Barpani watershed, Assam. India. Natural Resources Research, 27(4), 503–515. https://doi.org/10.1007/s11053-017-9367-y

    Article  Google Scholar 

  • Ahmed, S., Khurshid, S., Qureshi, F., Hussain, A., & Bhattacharya, A. (2019). Heavy metals and geo-accumulation index development for groundwater of mathura city, Uttar Pradesh. Desalination and Water Treatment, 138, 291–300. https://doi.org/10.5004/dwt.2019.23322

    Article  CAS  Google Scholar 

  • Alam, S., Borthakur, A., Ravi, S., Gebremichael, M., & Mohanty, S. K. (2021). Managed aquifer recharge implementation criteria to achieve water sustainability. Science of the Total Environment, 768, 144992. https://doi.org/10.1016/j.scitotenv.2021.144992

  • Aloui, D., Chekirbane, A., Stefan, C., Schlick, R., Msaddek, M. H., & Mlayah, A. (2022). Use of a GIS-multi-criteria decision analysis and web-based decision support tools for mapping and sharing managed aquifer recharge feasibility in Enfidha plain, NE of Tunisia. Arabian Journal of Geosciences, 15(7). https://doi.org/10.1007/s12517-022-09893-8

  • Bhanja, S. N., Mukherjee, A., Rodell, M., Wada, Y., Chattopadhyay, S., Velicogna, I., et al. (2017). Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-07058-2

    Article  CAS  Google Scholar 

  • Bhartariya, S.G., Prasad, R. K., Singh, K. (2022). Groundwater year book, Uttar Pradesh. Technical report prepared by Central Ground Water Board, Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India.

  • Chabukdhara, M., Gupta, S. K., Kotecha, Y., & Nema, A. K. (2017). Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment. Chemosphere, 179, 167–178. https://doi.org/10.1016/j.chemosphere.2017.03.086

    Article  CAS  Google Scholar 

  • Chen, X., Song, J., & Wang, W. (2010). Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer. Journal of Hydrology, 388(3–4), 379–388. https://doi.org/10.1016/j.jhydrol.2010.05.017

    Article  Google Scholar 

  • Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., & Vengosh, A. (2019). Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Science of the Total Environment, 688, 1216–1227. https://doi.org/10.1016/j.scitotenv.2019.06.334

    Article  CAS  Google Scholar 

  • Dillon, P., Escalante, E. F., Megdal, S. B., & Massmann, G. (2020). Managed aquifer recharge for water resilience. Water (Switzerland) 12. https://doi.org/10.3390/W12071846

  • Duhan, A. K. (2017). Groundwater pumping irrigation in Haryana: issues and challenges. International Journal of Research in Geography, 3(2), 18–21. https://doi.org/10.20431/2454-8685.0302003

  • Facchi, A., Negri, C., Rienzner, M., Chiaradia, E., & Romani, M. (2020). Groundwater recharge through winter flooding of rice areas. In In Innovative biosystems engineering for sustainable agriculture, forestry and food production: International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA) (pp. 79–87). Springer International Publishing. https://doi.org/10.1007/978-3-030-39299-4_9

  • Fuentes, I., & Vervoort, R. W. (2020). Site suitability and water availability for a managed aquifer recharge project in the Namoi basin, Australia. Journal of Hydrology: Regional Studies, 27, 100657. https://doi.org/10.1016/j.ejrh.2019.100657

  • Gelebo, A. H., Kasiviswanathan, K. S., & Khare, D. (2022). Assessment of the spatial–temporal distribution of groundwater recharge in data-scarce large-scale African river basin. Environmental Monitoring and Assessment, 194(3), 1–17. https://doi.org/10.1007/s10661-022-09778-z

    Article  Google Scholar 

  • Glaz, B., & Lingle, S. E. (2012). Flood duration and time of flood onset effects on recently planted sugarcane. Agronomy Journal, 104(3), 575–583. https://doi.org/10.2134/agronj2011.0351

    Article  Google Scholar 

  • Gomathi, R., Gururaja Rao, P. N., Chandran, K., & Selvi, A. (2015). Adaptive responses of sugarcane to waterlogging stress: An over view. Sugar Tech, 17(4), 325–338. https://doi.org/10.1007/s12355-014-0319-0

    Article  CAS  Google Scholar 

  • Goswami, T., & Ghosal, S. (2022). Understanding the suitability of two MCDM techniques in mapping the groundwater potential zones of semi-arid Bankura District in eastern India. Groundwater for Sustainable Development, 17, 100727. https://doi.org/10.1016/j.gsd.2022.100727

  • Haghshenas, E., Gholamalifard, M., Mahmoudi, N., & Kutser, T. (2021). Developing a gis-based decision rule for sustainable marine aquaculture site selection: An application of the ordered weighted average procedure. Sustainability (switzerland), 13(5), 1–23. https://doi.org/10.3390/su13052672

    Article  Google Scholar 

  • Harter, T. (2003). Basic concepts of groundwater hydrology. UCANR Publications. https://www.google.co.in/books/edition/Basic_Concepts_of_Groundwater_Hydrology/SuEcaXhJTjQC?hl=en&gbpv=1&dq=Groundwater+Hydrology+and+Wells&pg=PA3&printsec=frontcover

  • India, D. (2016). Directorate of economics and statistics. Available online: https://indiastat.com (accessed on 25 February 2023).

  • Jadav, K., & Yadav, B. (2022). Assessing the suitability of agricultural managed aquifer recharge (AgMAR) strategy in the overexploited and contaminated Hindon river basin (HRB), India. In AGU Fall Meeting Abstracts (H53A-05). https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1162055

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resources Management, 21(2), 427–467. https://doi.org/10.1007/s11269-006-9024-4

    Article  Google Scholar 

  • Juraimi, A. S., Muhammad Saiful, A. H., Begum, M., Anuar, A. R., & Azmi, M. (2009). Influence of flooding intensity and duration on rice growth and yield. Pertanika Journal of Tropical Agricultural Science, 32(2), 195–208.

    Google Scholar 

  • Kambhammettu, B. V. N. P., Allena, P., & King, J. P. (2011). Application and evaluation of universal kriging for optimal contouring of groundwater levels. Journal of Earth System Science, 120(3), 413–422. https://doi.org/10.1007/s12040-011-0075-4

    Article  Google Scholar 

  • Khalil, K., Khan, Q., & Mohamed, M. (2022). Selection criteria of best sites for aquifer storage and recovery in the Eastern District of Abu Dhabi, United Arab Emirates. Groundwater for Sustainable Development, 18, 100771. https://doi.org/10.1016/j.gsd.2022.100771

  • Khan, A., Govil, H., Taloor, A. K., & Kumar, G. (2020). Identification of artificial groundwater recharge sites in parts of Yamuna River basin India based on Remote Sensing and Geographical Information System. Groundwater for Sustainable Development, 11, 100415. https://doi.org/10.1016/j.gsd.2020.100415

  • Kong, J., Xin, P., Hua, G. F., Luo, Z. Y., Shen, C. J., Chen, D., & Li, L. (2015). Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of Hydrology, 528, 397–407. https://doi.org/10.1016/j.jhydrol.2015.06.045

    Article  Google Scholar 

  • Kourakos, G., Dahlke, H. E., & Harter, T. (2019). Increasing groundwater availability and seasonal base flow through agricultural managed aquifer recharge in an irrigated basin. Water Resources Research, 55(9), 7464–7492. https://doi.org/10.1029/2018WR024019

    Article  Google Scholar 

  • Kuchimanchi, B. R., Ripoll-Bosch, R., Steenstra, F. A., Thomas, R., & Oosting, S. J. (2023). The impact of intensive farming systems on groundwater availability in dryland environments: A watershed level study from Telangana, India. Current Research in Environmental Sustainability, 5, 100198. https://doi.org/10.1016/j.crsust.2022.100198

  • Levintal, E., Kniffin, M. L., Ganot, Y., Marwaha, N., Murphy, N. P., & Dahlke, H. E. (2022). Agricultural managed aquifer recharge (Ag-MAR)—a method for sustainable groundwater management: A review. Critical Reviews in Environmental Science and Technology, 1–24. https://doi.org/10.1080/10643389.2022.2050160

  • Lucas, M., & Wendland, E. (2016). Recharge estimates for various land uses in the Guarani aquifer system outcrop area. Hydrological Sciences Journal, 61(7), 1253–1262. https://doi.org/10.1080/02626667.2015.1031760

    Article  Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766.

  • Marwaha, N., Kourakos, G., Levintal, E., & Dahlke, H. E. (2021). Identifying agricultural managed aquifer recharge locations to benefit drinking water supply in rural communities. Water Resources Research, 57(3). https://doi.org/10.1029/2020WR028811

  • Masoud, M. H. Z., Basahi, J. M., & Zaidi, F. K. (2019). Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas. Environmental Monitoring and Assessment, 191(1). https://doi.org/10.1007/s10661-018-7173-6

  • Mishra, K., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water security in a changing environment : Concept. Water, 13(4), 490.

    Article  Google Scholar 

  • NBSS and LUP. (n.d.). Available online: https://nbsslup.icar.gov.in/about-institute/ (accessed on 25 February 2023).

  • Negri, C., Chiaradia, E., Rienzner, M., Mayer, A., Gandolfi, C., Romani, M., & Facchi, A. (2020). On the effects of winter flooding on the hydrological balance of rice areas in northern Italy. Journal of Hydrology, 590, 125401. https://doi.org/10.1016/j.jhydrol.2020.125401

  • Painter, B. (2018). Protection of groundwater dependent ecosystems in Canterbury, New Zealand: The targeted stream augmentation project. Sustainable Water Resources Management, 4(2), 291–300. https://doi.org/10.1007/s40899-017-0188-2

    Article  Google Scholar 

  • Pavelic, P., Sikka, A., Alam, M. F., Sharma, B. R., Muthuwatta, L., Eriyagama, N., Villholth, K. G., Shalsi, S., Mishra, V. K., Jha, S. K., Verma, C. L., Sharma, N., Reddy, V. R., Rout, S. K., Kant, L., Govindam, M., Gangopadhyay, P., Karthikeyan, B., & Chni, V. (2021). Utilizing floodwaters for recharging depleted aquifers and sustaining irrigation lessons from multi-scale assessments in the Ganges River Basin (p. 4). International Water Management Institute (IWMI).

    Google Scholar 

  • Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., et al. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11(3), 226–233. https://doi.org/10.1038/s41558-020-00972-w

    Article  Google Scholar 

  • Rahman, M. A., Rusteberg, B., Gogu, R. C., Lobo Ferreira, J. P., & Sauter, M. (2012). A new spatial multicriteria decision support tool for site selection for implementation of managed aquifer recharge. Journal of Environmental Management, 99, 61–75. https://doi.org/10.1016/j.jenvman.2012.01.003

    Article  Google Scholar 

  • Rajasekhar, M., Ajaykumar, K., Raju G, S., & Bhagat, V. (2021). Identification of artificial groundwater recharge zones in semi-arid region of southern India using geospatial and integrated decision-making approaches. Environmental Challenges, 5, 100278. https://doi.org/10.1016/j.envc.2021.100278

  • Rawat, A., Panigrahi, N., Yadav, B., Jadav, K., Mohanty, M. P., Khouakhi, A., & Knox, J. W. (2023). Scaling up indigenous rainwater harvesting: A preliminary assessment in Rajasthan. India. Water (switzerland), 15(11), 1–22. https://doi.org/10.3390/w15112042

    Article  CAS  Google Scholar 

  • Reddy, B. B., Ghosh, B. C., & Panda, M. M. (1985). Flood tolerance of rice at different crop growth stages as affected by fertilizer application. Plant and Soil, 3(2), 255–263.

    Article  Google Scholar 

  • Richard-Ferroudji, A., Raghunath, T. P., & Venkatasubramanian, G. (2018). Managed aquifer recharge in India: Consensual policy but controversial implementation. Water Alternatives, 11(3), 749–769.

    Google Scholar 

  • Ross, A., & Hasnain, S. (2018). Factors affecting the cost of managed aquifer recharge (MAR) schemes. Sustainable Water Resources Management, 4(2), 179–190. https://doi.org/10.1007/s40899-017-0210-8

    Article  Google Scholar 

  • Russo, T. A., Fisher, A. T., & Lockwood, B. S. (2015). Assessment of managed aquifer recharge site suitability using a GIS and modeling. Groundwater, 53(3), 389–400. https://doi.org/10.1111/gwat.12213

    Article  CAS  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2012). The possibility of group choice: Pairwise comparisons and merging functions. Social Choice and Welfare, 38(3), 481–496. https://doi.org/10.1007/s00355-011-0541-6

    Article  Google Scholar 

  • Sadeghi, A. R., & Hosseini, S. M. (2023). Assessment and delineation of potential groundwater recharge zones in areas prone to saltwater intrusion hazard: A case from Central Iran. Environmental Monitoring and Assessment, 195(1). https://doi.org/10.1007/s10661-022-10778-2

  • Sallwey, J., Bonilla Valverde, J. P., Vásquez López, F., Junghanns, R., & Stefan, C. (2019). Suitability maps for managed aquifer recharge: A review of multicriteria decision analysis studies. Environmental Reviews, 27(2), 138–150. https://doi.org/10.1139/er-2018-0069

    Article  Google Scholar 

  • Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., et al. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth and Environment, 4(2), 87–101. https://doi.org/10.1038/s43017-022-00378-6

    Article  Google Scholar 

  • Serra, J., Paredes, P., Cordovil, Cm. S., Cruz, S., Hutchings, N. J., & Cameira, M. R. (2023). Is irrigation water an overlooked source of nitrogen in agriculture? Agricultural Water Management, 278, 108147. https://doi.org/10.1016/j.agwat.2023.108147

  • Sharma, R., Kumar, A., Singh, N., & Sharma, K. (2021). Impact of seasonal variation on water quality of Hindon River: Physicochemical and biological analysis. SN Applied Sciences, 3(1), 1–11. https://doi.org/10.1007/s42452-020-03986-3

    Article  CAS  Google Scholar 

  • Shukla, S. K., Sharma, L., Awasthi, S. K., & Pathak, A. D. (2017). Sugarcane in India: Package of practices for different agro-climatic zones(all India coordinated research project on sugarcane-ICAR). Indian Institute of Sugarcane Research, 1, 1–64.

    Google Scholar 

  • Srivastava, S. K., Chand, R., Singh, J., Kaur, A. P., Jain, R., Kingsly, I., & Raju, S. S. (2017). Revisiting groundwater depletion and its implications on farm economics in Punjab, India. Current Science, 113(3), 422–429. https://doi.org/10.18520/cs/v113/i03/422-429

  • Standen, K., & Monteiro, J. P. (2020). In-channel managed aquifer recharge: A review of current development worldwide and future potential in europe. Water (switzerland), 12(11), 1–28. https://doi.org/10.3390/w12113099

    Article  Google Scholar 

  • State Water Resources Agency (SWaRA), Government of Uttar Pradesh (2020). Development of River basin assessment and plans for all major river basins in Uttar Pradesh.

  • Tanttu, U., & Jokela, P. (2018). Sustainable drinking water quality improvement by managed aquifer recharge in Tuusula region. Finland. Sustainable Water Resources Management, 4(2), 225–235. https://doi.org/10.1007/s40899-017-0198-0

    Article  Google Scholar 

  • Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586-020-2780-0

    Article  CAS  Google Scholar 

  • Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T. C., Fereres, E., Heng, L. K., et al. (2014). AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling and Software, 62, 351–360. https://doi.org/10.1016/j.envsoft.2014.08.005

    Article  Google Scholar 

  • Wada, Y., Van Beek, L. P. H., & Bierkens, M. F. P. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48(1). https://doi.org/10.1029/2011WR010562

  • Water, U. N. (2022). Groundwater: Making the invisible visible. The United Nations World Water Development Report.

  • Waterhouse, H., Arora, B., Spycher, N. F., Nico, P. S., Ulrich, C., Dahlke, H. E., & Horwath, W. R. (2021). Influence of agricultural managed aquifer recharge (AgMAR) and stratigraphic heterogeneities on nitrate reduction in the deep subsurface. Water Resources Research, 57(5), 1–22. https://doi.org/10.1029/2020WR029148

    Article  Google Scholar 

  • Woodward, A., Smith, K. R., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., et al. (2014). Climate change and health: On the latest IPCC report. The Lancet, 383(9924), 1185–1189. https://doi.org/10.1016/S0140-6736(14)60576-6

    Article  Google Scholar 

  • Wu, W. Y., Lo, M. H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., et al. (2020). Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-17581-y

    Article  CAS  Google Scholar 

  • Yadav, B., Patidar, N., Sharma, A., Panigrahi, N., Sharma, R. K., Loganathan, V., et al. (2022). Assessment of traditional rainwater harvesting system in barren lands of a semi-arid region: A case study of Rajasthan (India). Journal of Hydrology: Regional Studies, 42, 101149. https://doi.org/10.1016/j.ejrh.2022.101149

  • Yan, W., Li, F., & Zhao, Y. (2022). Determination of irrigation water quantity and its impact on crop yield and groundwater. Agricultural Water Management, 273, 107900. https://doi.org/10.1016/j.agwat.2022.107900

  • Zheng, Y., Vanderzalm, J., Hartog, N., Escalante, E. F., & Stefan, C. (2023). Correction: The 21st century water quality challenges for managed aquifer recharge: towards a risk-based regulatory approach. Hydrogeology Journal, 31(1), 31–34. https://doi.org/10.1007/s10040-023-02610-z

Download references

Funding

The research was funded by the Science and Engineering Research Board (SERB), Govt. of India (Grant Ref: SRG/2021/000864-C) as a Startup Research Grant (SRG) to the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

Kartik Jadav: Conceptualization, Data collection, Data Curation, Methodology, Formal analysis, Writing – original draft. Basant Yadav: Conceptualization, Funding acquisition, Methodology, Supervision, Writing-review, and editing.

Corresponding author

Correspondence to Basant Yadav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadav, K., Yadav, B. Identifying the suitable managed aquifer recharge (MAR) strategy in an overexploited and contaminated river basin. Environ Monit Assess 195, 1014 (2023). https://doi.org/10.1007/s10661-023-11586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11586-y

Keywords

Navigation