Skip to main content
Log in

Kinetic modeling of the adsorption and desorption of metallic ions present in effluents using the biosorbent obtained from Syagrus romanzoffiana

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the kinetic mechanism of adsorption and desorption, as well as the equilibrium isotherms, of four metallic ions (Cd2+, Cu2+, Ni2+, and Zn2+) mono and multicomponent were investigated. The biosorbent used was produced from Jerivá (Syagrus romanzoffiana—commonly known as queen palm) coconut. A kinetic model that considers macropore diffusion as a control step was solved. The finite volume method was used in the discretization of the equations, and the algorithm was implemented in the Fortran programming language. The equilibrium time for monocomponent adsorption was 5 min; for the multicomponent tests, equilibrium occurred instantly (less than 2 min of adsorption). The pseudo-second-order model presented the lowest mean of the sum of normalized errors (SNE) and represented the experimental data of mono and multicomponent adsorption and desorption. Single and multicomponent Langmuir model represented the adsorption isotherms. The maximum capacity of adsorption of metallic ions, both mono and multicomponent, was higher for copper, and the multicomponent adsorption proved to be antagonistic; the presence of co-ions in the solution reduced the removal of metals due to competition between these contaminants. The capture preference order was justified by the physicochemical properties of the ions, such as electron incompatibility and electronegativity. All these situations justified the maximum adsorption of Cu2+, followed by Zn2+, Cd2+, and Ni2+ in the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • An, F. Q., Wu, R. Y., Li, M., Hu, T. P., Gao, J. F., & Yuan, Z. G. (2017). Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: Kinetics, isotherms and thermodynamics. Reactive and Functional Polymers, 118, 42–50. https://doi.org/10.1016/j.reactfunctpolym.2017.07.005

    Article  CAS  Google Scholar 

  • Brazil (2021). Ordination GM/MS n° 888. Ministry of Health. Retrieved July 12, 2021, from https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562

  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  • Cechinel, M. A. P., Mayer, D. A., Pozdniakova, T. A., Mazur, L. P., Boaventura, R. A. R., de Souza, A. A. U., de Souza, S. M. A. G. U., & Vilar, V. J. P. (2016). Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chemical Engineering Journal, 286, 1–15. https://doi.org/10.1016/j.cej.2015.10.042

    Article  CAS  Google Scholar 

  • Çengel, Y. A., & Ghajar, A. J. (2007). Heat and mass transfer: A practical approach (3th ed.). New York: McGraw-Hill.

  • Chu, K. H., & Hashim, M. A. (2001). Desorption of copper from polyvinyl alcohol-immobilized seaweed biomass. Acta Biotechnologica, 21, 295–306. https://doi.org/10.1002/1521-3846(200111)21:4%3c295::AID-ABIO295%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  • da Paixão Cansado, I. P., Belo, C. R., & Mourão, P. A. M. (2018). Valorisation of Tectona Grandis tree sawdust through the production of high activated carbon for environment applications. Bioresource Technology, 249, 328–333. https://doi.org/10.1016/j.biortech.2017.10.033

    Article  CAS  Google Scholar 

  • de Lima, A. C. A., Nascimento, R. F., de Sousa, F. F., Filho, J. M., & Oliveira, A. C. (2012). Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions. Chemical Engineering Journal, 185, 274–284. https://doi.org/10.1016/j.cej.2012.01.037

    Article  CAS  Google Scholar 

  • Esfandir, N., Suri, R., & McKenzie, E. R. (2022). Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. Journal of Hazardous Materials, 423, 126938. https://doi.org/10.1016/j.jhazmat.2021.126938

    Article  CAS  Google Scholar 

  • Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2, 239–259. https://doi.org/10.1016/j.jece.2013.12.019

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. The Canadian Journal of Chemical Engineering, 76, 822–827. https://doi.org/10.1002/cjce.5450760419

    Article  CAS  Google Scholar 

  • Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2017). A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceramics International, 43, 4716–4720. https://doi.org/10.1016/j.ceramint.2016.12.122

    Article  CAS  Google Scholar 

  • Lagergreen, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetenskapsakademiens, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on glass, mica and platinum. Journal of the American Chemical Society, 345, 1361–1368.

    Article  Google Scholar 

  • Liu, Z., Xu, X., Dong, X., & Park, J. (2020). Competitive adsorption of heavy metal ions from aqueous solutions onto activated carbon and agricultural waste materials. Polish Journal of Environmental Studies, 29, 749–761. https://doi.org/10.15244/pjoes/104455

    Article  CAS  Google Scholar 

  • Liu, Y., Meng, Y., Qiu, X., Zhou, F., Wang, H., Zhou, S., & Yan, C. (2023). Novel porous phosphoric acid-based geopolymer foams for adsorption of Pb(II), Cd(II) and Ni(II) mixtures: Behavior and mechanism. Ceramics International, 49, 7030–7039. https://doi.org/10.1016/j.ceramint.2022.10.164

    Article  CAS  Google Scholar 

  • Lopičić, Z. R., Stojanović, M. D., Radoičić, T. S. K., Milojković, J. V., Petrović, M. S., Mihajlović, M. L., & Kijevčanin, M. L. J. (2017). Optimization of the process of Cu(II) sorption by mechanically treated Prunus persica L. - Contribution to sustainability in food processing industry. Journal of Cleaner Production, 156, 95–105. https://doi.org/10.1016/j.jclepro.2017.04.041

    Article  CAS  Google Scholar 

  • Luz, A. D., de Souza, S. M. A. G. U., da Luz, C., Rezende, R. V. D. P., & de Souza, A. A. U. (2013). Multicomponent adsorption and desorption of BTX compounds using coconut shell activated carbon: Experiments, mathematical modeling, and numerical simulation. Industrial & Engineering Chemistry Research, 52, 7896–7911. https://doi.org/10.1021/ie302849j

    Article  CAS  Google Scholar 

  • Masindi, V., Tekere, M., & Foteinis, S. (2023). Treatment of real tannery wastewater using facile synthesized magnesium oxide nanoparticles: Experimental results and geochemical modeling. Water Resources and Industry, 29, 100205. https://doi.org/10.1016/j.wri.2023.100205

    Article  CAS  Google Scholar 

  • Pigatto, J., Brandler, D., Tochetto, G., Memlak, D. M., Vargas, G. D. L. P., de Almeida Alves, A. A., Moroni, L. S., Kempka, A. P., da Luz, C., & Dervanoski, A. (2020). Development and characterization of a new adsorbent based on Jerivá coconut (Syagrus romanzoffiana) applied for removing toxic metals from water. Desalination and Water Treatment, 201, 261–277. https://doi.org/10.5004/dwt.2020.25893

    Article  CAS  Google Scholar 

  • Popovic, A. L., Rusmirovic, J. D., Velickovic, Z., Kovacevic, T., Jovanovic, A., Cvijetic, I., & Marinkovic, A. D. (2021). Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres. Journal of Industrial and Engineering Chemistry, 93, 302–314. https://doi.org/10.1016/j.jiec.2020.10.006

    Article  CAS  Google Scholar 

  • Rahmani-Sani, A., Singh, P., Raizada, P., Lima, E. C., Anastopoulos, I., Giannakoudakis, D. A., Sivamani, S., Dontsova, T. A., & Hosseini-Bandegharaei, A. (2020). Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresource Technology, 297, 122452. https://doi.org/10.1016/j.biortech.2019.122452

    Article  CAS  Google Scholar 

  • Ruthven, D. M. (1984). Principles of adsorption and adsorption process. John Wiley & Sons.

    Google Scholar 

  • Sajjadi, S. A., Meknati, A., Lima, E. C., Dotto, G. L., Mendoza-Castillo, D. I., Anastopoulos, I., Alakhras, F., Unuabonah, E. I., Singh, P., & Hosseini-Bandegharaei, A. (2019). A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. Journal of Environmental Management, 236, 34–44. https://doi.org/10.1016/j.jenvman.2019.01.087

    Article  CAS  Google Scholar 

  • Santacesaria, E., Morbidelli, M., Danise, P., Mercenari, M., & Carra, S. (1982). Separation of xylenes on Y zeolites. 1. Determination of the adsorption equilibrium parameters, selectivities, and mass transfer coefficients through finite bath experiments. Industrial & Engineering Chemistry Process Design and Development, 21, 440–445. https://doi.org/10.1021/i200018a016

    Article  CAS  Google Scholar 

  • Shen, J., & Duvnjak, Z. (2004). Effects of temperature and pH on adsorption isotherms for cupric and cadmium ions in their single and binary solutions using corncob particles as adsorbent. Separation Science and Technology, 39, 3023–3041. https://doi.org/10.1081/SS-200030335

    Article  CAS  Google Scholar 

  • Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., & Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193, 1004–1017. https://doi.org/10.1016/j.chemosphere.2017.11.093

    Article  CAS  Google Scholar 

  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9, 105688. https://doi.org/10.1016/j.jece.2021.105688

    Article  CAS  Google Scholar 

  • Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. (2016). Multi-component adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-activated bentonite; Equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4, 1166–1180. https://doi.org/10.1016/j.jece.2016.01.025

    Article  CAS  Google Scholar 

  • Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  • Tounsadi, H., Khalidi, A., Machrouhi, A., & Farnane, M. (2016). Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. Journal of Environmental Chemical Engineering, 4, 4549–4564. https://doi.org/10.1016/j.jece.2016.10.020

    Article  CAS  Google Scholar 

  • Tseng, J. Y., Chang, C. Y., Chang, C. F., Chen, Y. H., Chang, C. C., Ji, D. R., Chiu, C. Y., & Chiang, P. C. (2009). Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. Journal of Hazardous Materials, 171, 370–377. https://doi.org/10.1016/j.jhazmat.2009.06.030

    Article  CAS  Google Scholar 

  • Vidal, C. B., Melo, D. Q., Raulino, G. S. C., da Luz, A. D., da Luz, C., & Nascimento, R. F. (2016). Multielement adsorption of metal ions using Tururi fibers (Manicaria Saccifera): Experiments, mathematical modeling and numerical simulation. Desalination and Water Treatment, 57, 9001–9008. https://doi.org/10.1080/19443994.2015.1025441

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption carbon from solutions. Journal of the Sanitary Engineering Division, 89, 31–60. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  • Welty, J. R., Wicks, C. E., Rorrer, G. L., Wilson, R. E. (2009). Fundamentals of momentum, heat, and mass transfer (5th ed). New Jersey: John Wiley & Sons.

  • Zhou, J., Liu, Y., Zhou, X., Ren, J., & Zhong, C. (2018). Magnetic multi-porous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution. Applied Surface Science, 427, 976–985. https://doi.org/10.1016/j.apsusc.2017.08.110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal University of Fronteira Sul (UFFS) and the University of Santa Catarina State (UDESC – CEO) for the infrastructure yielded for the development of the research. We also thank the laboratory technicians who helped with the analysis.

Funding

This study was funded by the Research and Innovation Support Foundation of the State of Santa Catarina FAPESC (grant No. 2017TR721), and the Federal University of Fronteira Sul (UFFS) was responsible for the laboratory area and the acquisition of reagents and equipment (scientific initiation scholarship No. 270/ UFFS /2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Gabriel André Tochetto, Danieli Brandler, Joceane Pigatto, Gean Delise Leal Pasquali, Alcione Aparecida de Almeida Alves, Aniela Pinto Kempka, Cleuzir da Luz, and Adriana Dervanoski. The first draft of the manuscript was written by Gabriel André Tochetto and Adriana Dervanoski. The final draft of the manuscript was written by Gabriel André Tochetto, Danieli Brandler, Adriana Dervanoski, and Gean Delise Leal Pasquali, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gean Delise Leal Pasquali.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Mono and multicomponent kinetic;

• Kinetic mechanism;

• Numerical simulation of batch reactor;

• Kinetic evaluation of desorption;

• Mono and multicomponent isotherms.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tochetto, G.A., Brandler, D., Pigatto, J. et al. Kinetic modeling of the adsorption and desorption of metallic ions present in effluents using the biosorbent obtained from Syagrus romanzoffiana. Environ Monit Assess 195, 844 (2023). https://doi.org/10.1007/s10661-023-11459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11459-4

Keywords

Navigation