Skip to main content

Advertisement

Log in

Evaluation of transfer factors of 226Ra, 232Th, and 40K radionuclides from soil to grass and mango in the northern region of Bangladesh

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bangladesh is a rapidly developing country, which is vulnerable to various types of pollution due to the large-scale industrial and associated human activities that might potentially affect the locally harvested foodstuffs. Therefore, the transfer factor is an essential tool to assess the safety of foodstuffs due to the presence of natural radioactivity in environmental matrix and/or strata. This is a first study of its kind conducted in a well-known region for mango farming in Bangladesh, measuring the uptake of naturally occurring radioactive materials (NORMs) by grass and mango from soil to assess the ingestion doses to humans. The HPGe gamma-ray detector was used to determine the concentrations of NORMs in samples of soil (20), grass (10), and mango (10), which were then used to calculate the transfer factors of soil to grass and soil to mango. Average activity concentrations of 226Ra, 232Th, and 40K in associated soil samples (47.27 ± 4.10, 64.49 ± 4.32, 421.60 ± 28.85) of mango and 226Ra and 232Th in associated soil samples (45.07 ± 3.93, 52.17 ± 3.95) of grass were found to exceed the world average values. The average transfer factors (TFs) for mango were obtained in the order of 40K(0.80) > 226Ra (0.61) > 232Th (0.31), and for grass, it shows the order of 40K (0.78) > 232Th (0.64) > 226Ra (0.56). However, a few values (3 mango samples and 3 grass samples) of the estimated TFs exceeded the recommended limits. Moreover, Bangladesh lacks the transfer factors for most of the food crops; therefore, calculation of TFs in the major agricultural products is required all over Bangladesh, especially the foodstuffs produced near the Rooppur Nuclear Power Plant, which is scheduled to be commissioned in 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Absalom, J. P., Young, S. D., Crout, N. M. J., Nisbet, A. F., Woodman, R. F. M., Smolders, E., & Gillett, A. G. (1999). Predicting soil to plant transfer of radiocesium using soil characteristics. Environmental Science and Technology, 33(8), 1218–1223. https://doi.org/10.1021/es9808853

    Article  CAS  Google Scholar 

  • Aktar, M. N., Das, S. K., Yeasmin, S., Siraz, M. M., & Rahman, A. M. (2018). Measurement of radioactivity and assessment of radiological hazard of tea samples collected from local market In Bangladesh. Journal of Bangladesh Academy of Sciences, 42(2), 171–176. https://doi.org/10.3329/jbas.v42i2.40049

    Article  CAS  Google Scholar 

  • Alharbi, A., & El-Taher, A. (2013). A study on transfer factors of radionuclides from soil to plant. Life Science Journal, 10(2), 532–539.

    Google Scholar 

  • Amatullah, S., Rahman, R., Ferdous, J., Siraz, M. M. M., Khandaker, M. U., & Mahal, S. F. (2021). Assessment of radiometric standard and potential health risks from building materials used in Bangladeshi dwellings. International Journal of Environmental Analytical Chemistry, 00(00), 1–13. https://doi.org/10.1080/03067319.2021.1907361

    Article  CAS  Google Scholar 

  • Arafin, S. A. K., Bhuiyan, M. S., Ferdous, J., Hoque, M. A., Rahman, A. K. M. R., & El-Taher, A. (2021). Natural radiation absorbed dose rate and radiation transfer factor from soil to vegetable in some selected areas of Chittagong, Bangladesh. Journal of Southwest Jiaotong University, 56(4), 659–672. https://doi.org/10.35741/issn.0258-2724.56.4.56

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Bradley, D. A., Mahat, R. H., & Nor, R. M. (2014). Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y inMalaysia. Journal of Environmental Radioactivity, 135, 120–127. https://doi.org/10.1016/j.jenvrad.2014.04.009

    Article  CAS  Google Scholar 

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Mahat, R. (2015a). Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular malaysia for the estimation of ingestion dose to man. Annals of Nuclear Energy, 76, 85–93. https://doi.org/10.1016/j.anucene.2014.09.036

    Article  CAS  Google Scholar 

  • Asaduzzaman, K., Mannan, F., Uddin Khandaker, M., Salihu Farook, M., Elkezza, A., Bin Mohd Amin, Y., Sharma, S., & Bin Abu Kassim, H. (2015b). Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PLoS ONE, 10(10), 140667. https://doi.org/10.1371/journal.pone.0140667

  • Bangladesh Bureau of Statistics. (2020). Yearbook of Agricultural Statistics-2019 May 2020 (Issue May).

  • Bangladesh Bureau of Statistics. (2022a). Bangladesh Selected Statistics 2022.

  • Bangladesh Bureau of Statistics. (2022b). Preliminary Report on Population and Housing Census 2022.

  • Bangladesh National Portal. (n.d.). Geographical description of Gaibandha district. Retrieved October 9, 2022, from http://www.gaibandha.gov.bd/site/page/2cf93d80-18fd-11e7-9461-286ed488c766/

  • Bangladesh National Portal. (2013). Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium minehttps://doi.org/10.1016/j.nucengdes.2013.03.036

  • Bilgici Cengiz, G. (2019). Transfer factors of 226 Ra, 232 Th and 40 K from soil to pasture-grass in the northeastern of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 319(1), 83–89. https://doi.org/10.1007/s10967-018-6337-8

    Article  CAS  Google Scholar 

  • Brady, N. C., Weil, R. R., & Brady, N. C. (2002). Elements of the nature and properties of soils (Second Edi). Prentice -Hall Inc.

    Google Scholar 

  • Černe, M., Smodiš, B., & Štrok, M. (2011). Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh. Nuclear Engineering and Design, 241(4), 1282–1286. https://doi.org/10.1016/J.NUCENGDES.2010.04.003

  • Chakraborty, S. R., Azim, R., Rezaur Rahman, A. K. M., & Sarker, R. (2013). Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the chittagong city of Bangladesh. Journal of Physical Science, 24(1), 95–113.

    CAS  Google Scholar 

  • Dos Santos, J. A., Dos Santos Amaral, R., Santos, D. N., & J. M., Da Silva, A. N. C., Rojas, L. A. V., Milan, M. O., De Almeida Maciel Neto, J., Bezerra, J. D., & Araújo, E. E. N. De. (2018). Radioactive disequilibrium and dynamic of natural radionuclides in soils in the State of Pernambuco - Brazil. Radiation Protection Dosimetry, 182(4), 448–458. https://doi.org/10.1093/rpd/ncy101

    Article  CAS  Google Scholar 

  • Ehlken, S., & Kirchner, G. (2002). Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: A review. Journal of Environmental Radioactivity, 58(2–3), 97–112. https://doi.org/10.1016/S0265-931X(01)00060-1

    Article  CAS  Google Scholar 

  • Gaffar, S., Ferdous, M. J., Begum, A., & Ullah, S. M. (2014). Transfer of natural radionuclides from soil to plants in north western parts of Dhaka. Malaysian Journal of Soil Science, 18, 61–74.

    Google Scholar 

  • Greger, M. (2004). Uptake of nuclides by plants. (SKB-TR--04-14). Sweden.

  • Haque, M., & Ferdous, M. J. (2017). Transferência de radionuclídeos naturais do solo para as plantas em savar Dhaka. Spanish Journal of Soil Science, 7(2), 133–145. https://doi.org/10.3232/SJSS.2017.V7.N2.05

    Article  Google Scholar 

  • Hazou, E., Zorko, B., Dzagli, M. M., Haliba, E. M., Guembou, S. C. J., Ndontchueng, M. M., & Tchakpele, P. K. (2021). Transfer from soil to grass and statistical analysis of naturally occurring radionuclides in soil from phosphate mining and processing sites in Maritime Region of Togo. Environmental Earth Sciences, 80(18). https://doi.org/10.1007/s12665-021-09931-w

  • IAEA. (1987). Preparation and certification of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1. Iaea-Rl-148, August, 48. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/18/088/18088420.pdf

  • IAEA. (1989). Measurement of radionuclides in food and the environment. Technical Reports Series No. 295 (Vienna: IAEA). In Journal of Environmental Radioactivity.

  • IAEA. (1994). Handbook of parameter values for the prediction of radionuclide transfer in temperate environment. Technical reports series no. 364. IAEA, Vienna.

  • Ibikunle, S. B. (2022). Assessment of natural radioactivity in mango, the influence of soil radioactivity, its radiation hazard indices and the overall excess lifetime cancer risk. International Journal of Radiation Research, 20(2), 483–489. https://doi.org/10.52547/ijrr.20.2.33

  • International Atomic Energy Agency. (2019). Guidelines on soil and vegetation sampling for radiological monitoring. Technical Reports Series No. 486, 486.

    Google Scholar 

  • IUR. (1994). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Internat. Atomic Energy Agency.

  • Jagetiya, B., Sharma, A., Soni, A., & Khatik, U. K. (2014). Phytoremediation of radionuclides: A report on the state of the art. Radionuclide Contamination and Remediation Through Plants, 1–31. https://doi.org/10.1007/978-3-319-07665-2_1

  • James, J. P., Dileep, B. N., Ravi, P. M., Joshi, R. M., Ajith, T. L., Hegde, A. G., & Sarkar, P. K. (2011). Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region. India. Journal of Environmental Radioactivity, 102(12), 1070–1077. https://doi.org/10.1016/j.jenvrad.2011.07.011

    Article  CAS  Google Scholar 

  • Jananee, B., Rajalakshmi, A., Thangam, V., Bharath, K. M., & Sathish, V. (2021). Natural radioactivity in soils of Elephant Hills, Tamilnadu, India. Journal of Radioanalytical and Nuclear Chemistry, 329(3), 1261–1268. https://doi.org/10.1007/s10967-021-07886-7

    Article  CAS  Google Scholar 

  • Jazzar, M. M. (2014). Transfer of natural radionuclides from soil to plants and grass in the western north of West Bank Environment- Palestine. International Journal of Environmental Monitoring and Analysis, 2(5), 252. https://doi.org/10.11648/j.ijema.20140205.14

  • Karunakara, N., Rao, C., Ujwal, P., Yashodhara, I., Kumara, S., & Ravi, P. M. (2013). Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: A study on rice grown in India. Journal of Environmental Radioactivity, 118, 80–92. https://doi.org/10.1016/J.JENVRAD.2012.11.002

    Article  CAS  Google Scholar 

  • Khandaker, M. U., Heffny, N., Adillah B., Amin, Y. M., & Bradley, D. A. (2019a). Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans. Algal Research, 38. https://doi.org/10.1016/J.ALGAL.2018.101386

  • Khandaker, M. U., Mohd Nasir, N. L., Asaduzzaman, K., Olatunji, M. A., Amin, Y. M., Kassim, H. A., Bradley, D. A., Jojo, P. J., & Alrefaed, T. (2016). Evaluation of radionuclides transfer from soil-to-edible flora and estimation of radiological dose to the Malaysian populace. Chemosphere, 154, 528–536. https://doi.org/10.1016/j.chemosphere.2016.03.121

    Article  CAS  Google Scholar 

  • Khandaker, M. U., Shuaibu, H. K., Alklabi, F. A. A., Alzimami, K. S., & Bradley, D. A. (2019b). Study of primordial 226Ra, 228Ra, and 40K concentrations in dietary palm dates and concomitant radiological risk. Health Physics, 116(6), 789–798. https://doi.org/10.1097/HP.0000000000001042

    Article  CAS  Google Scholar 

  • Khandaker, M. U., Uwatse, O. B., Khairi, B. S., & K. A., Faruque, M. R. I., & Bradley, D. A. (2019c). Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur. Radiation Protection Dosimetry, 185(3), 343–350. https://doi.org/10.1093/RPD/NCZ018

    Article  CAS  Google Scholar 

  • Mahmud, J. A., Siraz, M. M. M., Alam, M. S., Das, C., Bradley, D. A., Khandaker, M. U., Shelley, A., Yeasmin, S., Das, C., Bradley, D. A., Khandaker, M. U., Tokonami, S., & Shelley, A. (2023). A study into the long-overlooked carcinogenic radon in bottled water and deep well water in. International Journal of Environmental Analytical Chemistry, 00(00), 1–13. https://doi.org/10.1080/03067319.2022.2163895

    Article  CAS  Google Scholar 

  • Martínez-Aguirre, A., Garcia-León, M., & Ivanovich, M. (1995). U and Th speciation in river sediments. Science of the Total Environment, 173174(C), 203–209. https://doi.org/10.1016/0048-9697(95)04759-X

  • Mubin, N., Baten, B. A., & R., Jahan, S., Zohora, F. T., Chowdhury, N. M., & Faruque, G. M. (2021). Cancer related knowledge, attitude, and practice among community health care providers and health assistants in rural Bangladesh. BMC Health Services Research, 21(1), 1–11. https://doi.org/10.1186/s12913-021-06202-z

    Article  Google Scholar 

  • Napier, B. A., Rhoads, K., & Strenge, D. L. (2003). A compendium of transfer factors for agricultural and animal products(No. PNNL-13421). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

  • Pallavicini, N. (2011). Activity concentration and transfer factors of natural and artificial radionuclides in the Swedish counties of Uppsala and Jämtland. Master’s Thesis in Environmental Science, Department of Soil and Environment, Swedish University of Agricultural Sciences.

  • Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., Tripathi, R. M., & Puranik, V. D. (2013). Age-dependent dose and health risk due to intake of uranium in drinking water from Jaduguda, India. Radiation Protection Dosimetry, 155(2), 210–216. https://doi.org/10.1093/rpd/ncs328

    Article  CAS  Google Scholar 

  • Poschl, M., & Nollet, L. M. L. (2007). Radionuclide concentrations in food and environment. CRC Press.

  • Rashid, B., & Islam, B. (2018). Physiography of the Barind Tract and its surrounding areas Bengal Basin, physiography of the Barind Tract and its surrounding areas Bengal Basin, Bangladesh, 5(May), 1–9.

    Google Scholar 

  • Rashid, B., Islam, S. U., & Islam, B. (2015a). River morphology and evolution of the Barind Tract. Bangladesh. Journal of Nepal Geological Society, 49(1), 65–76. https://doi.org/10.3126/jngs.v49i1.23144

    Article  Google Scholar 

  • Rashid, B., Sultan-Ul-Islam, & Islam, B. (2015b). Drainage characteristics and evolution of the Barind Tract, Bangladesh. American Journal of Earth Sciences1(4), 86.

  • Rashid, B., & Sultan-Ul-Islam, & Islam, B. (2015c). Sub-surface geology and evolution of the Barind Tract, Bangladesh. American Journal of Earth Sciences, 2(2), 22–38.

    Google Scholar 

  • Roy, D., Siraz, M. M. M., Dewan, M. J., Pervin, S., Rahman, A. F. M. M., Khandaker, M. U., & Yeasmin, S. (2022). Assessment of terrestrial radionuclides in the sandy soil from Guliakhali beach area of Chattogram, Bangladesh. Journal of Radioanalytical and Nuclear Chemistry, 331(3), 1299–1307. https://doi.org/10.1007/s10967-022-08196-2

    Article  CAS  Google Scholar 

  • Sarker, M., Siraz, M. M., Dewan, M. J., Pervin, S., Rahman, A. M., & Yeasmin, S., & Commission, E. (2021a). Measurement of radioactivity for the assessment of radiological risk in sand sample collected from Kuakata and Cox ’ s Bazar Sea Beach located in measurement of radioactivity for the assessment of radiological risk in sand sample collected from Kuakata an. Dhaka University Journal of Applied Science & Engineering, 6(1)(January), 52–57.

  • Sarker, M. S. D., Rahman, R., Siraz, M. M. M., Khandaker, M. U., & Yeasmin, S. (2021b). The presence of primordial radionuclides in powdered milk and estimation of the concomitant ingestion dose. Radiation Physics and Chemistry, 188(March), 109597. https://doi.org/10.1016/j.radphyschem.2021.109597

  • Shanthi, G., Thanka, T., & kumaran, J., Allen Gnana raj, G., & Maniyan, C. G. (2012). Transfer factor of the radionuclides in food crops from high-background radiation area of south west India. Radiation Protection Dosimetry, 149(3), 327–332. https://doi.org/10.1093/rpd/ncr235

    Article  CAS  Google Scholar 

  • Shayeb, M. A., Alharbi, T., Baloch, M. A., & Rahman Alsamhan, O. A. (2017). Transfer factors for natural radioactivity into date palm pits. Journal of Environmental Radioactivity, 167, 75–79. https://doi.org/10.1016/j.jenvrad.2016.11.014

    Article  CAS  Google Scholar 

  • Siraz, M. M. M., Pervin, S., Banik, S., Rahman, A. K. M. M., Rahman, A. F. M. M., & Yeasmin, S. (2020). Estimation of radiation hazards from imported zirconium materials used in ceramic tiles industries in Bangladesh. Nuclear Science and Applications, 28 (1July), 1–5.

  • Siraz, M. M. M., Roy, D., Dewan, M. J., Alam, M. S., Jubair, A. M., Rashid, M. B., Khandaker, M. U., Bradley, D. A., & Yeasmin, S. (2023). Vertical distributions of radionuclides along the tourist - attractive Marayon Tong Hill in the Bandarban district of Bangladesh. Environmental Monitoring and Assessment, 195, 1–16. https://doi.org/10.1007/s10661-023-10921-7

    Article  CAS  Google Scholar 

  • Skarlou, V., Arapis, G., Nobeli, C., Anoussis, J., & Haidouti, C. (1994). Direct and indirect contamination of tree crops with Cs-134. 26th Annual ESNA/IUR Meeting: Soil-Plant Relationships, 26, 180–187.

  • Štrok, M., & Smodiš, B. (2013). Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nuclear Engineering and Design, 261, 279–284. https://doi.org/10.1016/j.nucengdes.2013.03.036

    Article  CAS  Google Scholar 

  • Sultana, A., Siraz, M. M., Pervin, S., Rahman, A. M., Das, S. K., & Yeasmin, S. (2020). Assessment of radioactivity and radiological hazard of different food items collected from local market in Bangladesh. Journal of Bangladesh Academy of Sciences, 43(2), 141–148. https://doi.org/10.3329/jbas.v43i2.45735

    Article  CAS  Google Scholar 

  • Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69(10), 1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020

    Article  CAS  Google Scholar 

  • Tanha, M., Riebe, B., Ikeda-Ohno, A., Schulze, M., Khalid, F. R., Storai, A., & Walther, C. (2018). Environmental radioactivity studies in Kabul and northern Afghanistan. Journal of Radioanalytical and Nuclear Chemistry, 318(3), 2425–2433. https://doi.org/10.1007/s10967-018-6242-1

    Article  CAS  Google Scholar 

  • Tettey-Larbi, L., Darko, E. O., Schandorf, C., & Appiah, A. A. (2013). Natural radioactivity levels of some medicinal plants commonly used in Ghana. Springerplus, 2(1), 1–9. https://doi.org/10.1186/2193-1801-2-157/FIGURES/4

    Article  Google Scholar 

  • TRS 310, I. (1991). The environmental behaviour of radium. In Journal of Environmental Radioactivity (Vol. 13, Issue 3). https://doi.org/10.1016/0265-931x(91)90067-p

  • UNSCEAR. (2000). Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, Annex B.

  • UNSCEAR. (2008). Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. In UNSCEAR 2013 Report to the General Assembly with Scientific Annexes, Volume II, Scientific Annex B, Effects of radiation exposure of children (Vol. I).

  • Uosif, M. A. M., Alrowaili, Z. A., Elsaman, R., & Mostafa, A. M. A. (2020). Soil–soybean transfer factor of natural radionuclides in different soil textures and the assessment of committed effective dose. Radiation Protection Dosimetry, 188(4), 529–535. https://doi.org/10.1093/rpd/ncaa005

    Article  CAS  Google Scholar 

  • USEPA. (1999). Environmental Protection Agency: Cancer risk coefficients for environmental exposure to radionuclides. Federal Guidance Report N 13.

  • Vera Tome, F., Blanco Rodríguez, M. P., & Lozano, J. C. (2003). Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. Journal of Environmental Radioactivity, 65(2), 161–175. https://doi.org/10.1016/S0265-931X(02)00094-2

    Article  CAS  Google Scholar 

  • Yeasmin, S., Karmaker, S., Rahman, A. M., Siraz, M. M. M., & Sultana, M. S. (2014). Measurement of radioactvity in soil and vegetable samples in the northern area of Madhupur Upzila At Tangail District in Bangladesh and assessment of assiociated radological. Bangladesh Journal of Physics, 16(March 2017), 49–58.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. M.S. Mondol performed sample collection. Dr. Bazlar Rashid was responsible for the geological analysis of the study area and drew the geological and radiological maps included in the manuscript. Jubair Al Mahmud, M.S. Alam, and M.M. Mahfuz Siraz performed the data analysis and prepared the first draft of the manuscript. The research was carried out under the keen supervision of Dr. Suranjan Kumar Das and S. Yeasmin. Dr. Mayeen Uddin Khandaker performed the preliminary revisions of the first draft and provided important corrections and made the final revision and corrections. The final manuscript has been read and approved by all authors.

Corresponding author

Correspondence to S. K. Das.

Ethics declarations

Ethics approval

No humans or experimental animals were subjects of this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siraz, M.M.M., Das, S.K., Mondol, M.S. et al. Evaluation of transfer factors of 226Ra, 232Th, and 40K radionuclides from soil to grass and mango in the northern region of Bangladesh. Environ Monit Assess 195, 579 (2023). https://doi.org/10.1007/s10661-023-11223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11223-8

Keywords

Navigation