Skip to main content
Log in

Recent advances in instrumental techniques for heavy metal quantification

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metals (HMs) are ubiquitous; they are found in soil, water, air, and all biological matrices. The toxicity, bioaccumulation potential, and deleterious effects of most of these metals on humans and the environment have been widely documented. Consequently, the detection and quantification of HMs in various environmental samples have become a pressing issue. The analysis of the concentrations of HMs is a vital component of environmental monitoring; hence, the selection of the most suitable analytical technique for their determination has become a topic of great interest in food, environment, and human health safety. Analytical techniques for the quantification of these metals have evolved. Presently, a broad range of HM analytical techniques are available with each having its outstanding merits as well as limitations. Most analytical scientists, therefore, adopt complementation of more than one method, with the choice influenced by the specific metal of interest, desired limits of detection and quantification, nature of the interference, level of sensitivity, and precision among others. Sequel to the above, this work comprehensively reviews the most recent advances in instrumental techniques for the determination of HMs. It gives a general overview of the concept of HMs, their sources, and why their accurate quantification is pertinent. It highlights various conventional and more advanced techniques for HM determination, and as one of its kind, it also gives special attention to the specific merits and demerits of the analytical techniques. Finally, it presents the most recent studies in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The work was based on review of various literatures. Therefore there is no data availability.

References

  • Abuseleek, M., Farag, E., Seileek, M., & Alsayyed, M. (2015). Study of Heavy Metals Concentration in Cosmetics Purchased from Jordan Markets by ICP-MS and ICP-OES. https://doi.org/10.13140/RG.2.1.3547.5689

    Article  Google Scholar 

  • Addis, W., & Abebaw, A. (2017). Determination of heavy metal concentration in soils used for cultivation of Allium sativum L. (garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cogent Chemistry, 3, 1419422. https://doi.org/10.1080/23312009.2017.1419422

  • Agoro, M., Adeniji, A., Adefisoye, M., & Okoh, O. (2020). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province. Water, 12, 2746. https://doi.org/10.3390/w12102746

  • Ahmed, A., Singh, A., Padha, B., Sundramoorth, A., Tomar, A., & Arya, S. (2022). UV–vis spectroscopic method for detection and removal of heavy metal ions in water using Ag doped ZnO nanoparticles. https://doi.org/10.1016/j.chemosphere.2022.135208

  • Ahmed, M., & Alatawi, A. (2022). Comparison of the ICP OES viewing modes efficiency in the estimation of cadmium (Cd) and lead (Pb) in whole blood samples. 208–214. https://doi.org/10.1080/25765299.2022.2090148

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. 6730305. https://doi.org/10.1155/2019/6730305Article ID 290593

  • Bahinting, S., Pollon, A., Segur, S. ( 2021). Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry. Sensors, 21(5), 1811. https://doi.org/10.3390/s21051811

  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals:mercury, lead, chromium, cadmium, and arsenic. Frontier Pharmacolog, 12. https://doi.org/10.3389/fphar.2021.64972

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. 6, 9:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

  • Bulska, E., & Ruszcznska, A. (2017). Analytical techniques for trace element determination. Physical Sciences Reviews: 2(5)14. https://doi.org/10.1515/psr-2017-8002

  • Cheng F., Yng C., Zhou C., Lan L., Zhu H and Li Y. (2020). Simultaneous determination of metal ions in zinc sulfate solution using UV–vis spectrometry and SPSE-XGBoost Method.mSensors (Basel). 20(17), 4936. https://doi.org/10.3390/s20174936

  • Collingwood, A., & Adams, F. (2017). Chemical Imaging Analysis of the Brain with X-Ray Methods. https://doi.org/10.1016/j.sab.2017.02.013

    Article  Google Scholar 

  • Dinbore, W., Dabbo, W., & Washe, A. (2021). Differential pulse voltammetric determination of hexavalent chromium using nickel hexacyanoferrate modified glassy carbon electrode. Environmental Chemistry, Pollution & Waste Managementhttps://doi.org/10.1080/27658511.2021.1978633

  • Durai, L., & Badhu, S. (2022). Stripping voltammetry and chemometrics assisted ultra-selective. Sensors and Actuators Reports, 4. https://doi.org/10.1016/j.snr.2022.100097

  • Echioda, S., Ogunieye, A., Salisu, S., & Kolo, T. (2021). Spectrophotometric determination of selected heavy metals (Pb, Cr, Cd and As) in environmental, water and biological samples with synthesized glutaraldehyde phenyl hydrazone as the chromogenic reagent. European Journal of Advanced Chemistry, 2(3), 456. https://doi.org/10.24018/ejchem.2021.2.3.59

  • Elgrishi, N., Rountree, K., & MCCarthy, Rountree E, Eisenhart T. and Dempsey A. (2018). Practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  • Fang, L., Yan, X., Xiao, W., & Row, K. (2019).Extraction/preconcentration procedures for determination of metal ions in environmental samples. 1948965. https://doi.org/10.1155/2019/1948965

  • Fernandez, Z., Alvares, J., Alvarez, A., & Junior, O. (2020). Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS. Food Additives and Contaminants: Part B Surveillance, 14(1), 59–65. https://doi.org/10.1080/19393210.2020.1870576

    Article  CAS  Google Scholar 

  • Fernandez, Z., Valcarcel, L., Alvarez, A., & Torres, D. (2014). Application of cold vapor-atomic absorption (CVAAS) spectrophotometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control, 48, 37–42. https://doi.org/10.1016/j.foodcont.2014.05.056

    Article  CAS  Google Scholar 

  • Finsgar, M., Petovar, B., & Vodopivec, K. (2019). Bismuth-tin-film electrodes for Zn(II), Cd(II), and Pb(II) trace analysis. Microchemical Journal, 145, 676–685. https://doi.org/10.1016/j.microc.2018.11.036

  • Forero-Mendieta, J. R., Varón-Calderón, J. D., Varela-Martínez, D. A., Riaño-Herrera, D. A., Acosta-Velásquez, R. D., Benavides-Piracón, J. A. (2022). Validation of an analytical method for the determination of manganese and lead in human hair and nails using graphite furnace atomic absorption spectrometry. Separations, 9, 158. https://doi.org/10.3390/separations9070158

  • Gao, L., Di, D., Liu, X., & Teng, F. (2022). Comparative study of heavy metals analysis in mongolian medicines based on high sensitivity X-ray fluorescence spectroscopy and ICP-MS. Spectroscopy, 37(7), 20–27.

    Article  CAS  Google Scholar 

  • Gaur, V., Sharma, P., Gaur, P., Ariani, S., Ngo, H., & Guo, W. (2021). Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered, 12(1), 7297–7313. https://doi.org/10.1080/21655979.2021.197861

  • Gende, M., & Schmeling, M. (2022). Development of an Analytical Method for Determination of Lead and Cadmium in Biological Materials by GFAAS Using Escherichia Coli as Model Substance. https://doi.org/10.1371/journal.pone.0267775

    Article  Google Scholar 

  • Goday, S. (2019). Survey, screening, analysis of heavy metals in selected medicinal plants by UV-visible spectrophotometry method. Journal of Cleaner Production, 362(15), 132476.

    Google Scholar 

  • Hall, M. (2017). X-ray fluorescence energy dispersive (ED-XRF) and wavelength dispersive (WD-XRF) spectrometry. in book: The Oxford handbook of archaeological ceramic analysis.

  • Harris, L., ByersLindsay, J., McHenryTimothy, J., Grund, II. (2019). HXRF techniques to quantify heavy metals in vegetables at low detection limits. Food Chemistry X, 1

  • Huang, F., Peng, S., Yang, H., Cao, H., Ma, N., & Ma, L. (2022). Development of a novel and fast XRF instrument for large area heavy metal detection integrated with UAV. Environmental Research, 214, 2. https://doi.org/10.1016/j.envres.2022.113841

    Article  CAS  Google Scholar 

  • Idris, M., Umaru, D., Aliu, A., & Musa, I. (2021). Atomic absorption spectroscopy analysis of heavy metals in water at Daura Gypsum Mining Site, Yobe, Nigeria. Journal of Foundations and Physics, 8(2), 234.

  • Infante, H., Warren, J., Chlmers, J., Dent, G., Todoli, J., Collingwood, J., Telling, N., Resano, M., & Crasto, D. (2019). Glossary of methods and terms used in analytical spectroscopy (IUPAC Recommendations 2019). Pure and Applied Chemistry. https://doi.org/10.1515/pac-2019-0203

  • Inobeme, A. (2021). Effect of heavy metals on activities of soil microorganism. Microbial Rejuvenation of Polluted Environment, 115–1421.

  • Inobeme, A., Mathew, J. T., Adetunji, C. O., Ajai, A. I., Okonkwo, S., Inobeme, J., Adekoya, M. A., & Bamigboye, M. O. (2022). Trace elements and rare earth elements in aerosols. atmospheric aerosols: Properties, sources and detection. Environmental Science Engineering and Technology. Nova Science Publishers, Inc. https://doi.org/10.52305/CXUG8701

  • Ipeaiyeda, A. R., & Ayoade, A. R. (2017). Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper (II) 8-hydroxyquinoline. Applied Water Science, 7, 4449–4459. https://doi.org/10.1007/s13201-017-0590-9

    Article  CAS  Google Scholar 

  • Jolly, Y. N., Iqbal, S., Rahman, M., Kabir, J., Akter, S., & Ahmad iftekhar, A. (2017). Energy dispersive X-ray fluorescence detection of heavy metals in Bangladesh cows’ milk. Heliyon, 3(9). https://doi.org/10.1016/j.heliyon.2017.e00403

  • Kaonga, C. C., Kosamu, I. B. M., Utembe, W. R. (2021). A review of metal levels in urban dust. Their Indonesian Journal of Chemistry, 9, 243–246. https://doi.org/10.22146/ijc.21537

  • Kasozi, K., Otime, E., Ninsiima, H., & Musoke, G. (2021). An analysis of heavy metals contamination and estimating the daily intakes of vegetables from Uganda

  • Kensova, R., Hynek, D., Kynicky, J., & Kizek r. (2014). Determination of metal ions in the plasma of children with tumour diseases by differential pulse voltammetry. International Journal of Electrochemical Science, 9(8), 4675–4691.

    Google Scholar 

  • Khalafi, L., & Rafiee, M. (2017). Cyclic voltammetry. Tools and experimental techniques. Encyclopedia of Physical Organic Chemistry. https://doi.org/10.1002/9781118468586.epoc4036

  • Khalid, R., Helaluddin, A., Alaama, M., Abdualkader, A., Kasmuri, A., & Abbas, S. (2016). Reliability of graphite furnace atomic absorption spectrometry as alternative method for trace analysis of arsenic in natural medicinal products. Tropical Journal of Pharmaceutical Research, 15(9), 1967. https://doi.org/10.4314/tjpr.v15i9.22

  • Khan, A., Khan, M., & Saddiq, G. ( 2021)Energy-dispersive X-ray (EDX) fluorescence based analysis of heavy metals in marble powder, paddy soil and rice (Oryza sativa L.) with potential health risks in District Malakand, Khyber Pakhtunkhwa, Pakistan. 301–316.

  • Kim, Y., Rudasingwa, G., Cho, S., McWilliams, A., Kan, C., Kim, S., & Kimm, S. (2022) Comparison of the concentrations of heavy metals in PM2.5 analysed in three different global research institutions using X-ray fluorescence. Applied Science, 12(9), 4572. https://doi.org/10.3390/app12094572

  • Knihnicki, P., Skrzypek, A., Jakubowska, M., Porada, R., Rokici ́nska, A., Ku ́strowski, P., Ko ́scielniak, P., Kochana, J. (2022). Electrochemical sensing of Pb2+ and Cd2+ ions with the use of electrode modified with carbon-covered halloysite and carbon nanotubes. Molecules, 27, 4608. https://doi.org/10.3390/molecules271446

  • Kodom, K., Preko, K., & Boamah, D. (2012). X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. 1006–1021 https://doi.org/10.1080/15320383.2012.712073

  • Koleleni, Y., & Hajj, O. (2014). Determination of concentration of heavy metals in fish from sea port of Zanzibar by energy dispersive X-ray fluorescence (Edxrf)Tanz. Journal Science, 40.

  • Kumar, M., Mouli, P., Reddy, S., & Mohn, S. (2004). Differential pulse anodic stripping voltammetric determination of Pb, Cd, Cu, and Zn in air, diet, and blood samples: Exposure assessment. Pages 463–475 2007. https://doi.org/10.1081/AL-200047792

  • Liu, N., Ye, W., Liu, G., & Zhao, G. (2022). Improving the accuracy of stripping voltammetry detection of Cd2+ and Pb2+ in the presence of Cu2+ and Zn2+ by machine learning: Understanding and inhibiting the interactive interference among multiple heavy metals. Analytica Chimica Acta, 1213, 339956. https://doi.org/10.1016/j.aca.2022.339956

  • Liu, N., Zhao, G., & Liu, G. (2020). Coupling square wave anodic stripping voltammetry with support vector regression to detect the concentration of lead in soil under the interference of copper accurately. Sensors, 20(23), 6792. https://doi.org/10.3390/s20236792

  • Ma, L., Li, Z., Yabo, S., Sun, S., & Oji, H. (2022). Insight into the interaction between heavy metals and water-soluble organic compounds in PM2.5 affected by heavy haze using ultraviolet–visible and fluorescence spectra combined with two-dimensional correlation spectroscopy. Journal of Cleaner Production, 363(15), 1332476. https://doi.org/10.1016/j.jclepro.2022.132476

  • Maciel, J., Souza, M., Silva, L., & Dias. D. (2019). Direct determination of Zn, Cd, Pb and Cu in wine by differential pulse anodic stripping voltammetry.

  • Malik, L., Bashir, A., Qureashi, A., & Pandit, A. (2019). Detection and removal of heavy metal ions: A review. Environmental Chemistry Letters, 17(46). https://doi.org/10.1007/s10311-019-00891-z

  • Manousi, N., Isaakidou, E., & Zachariadis, G. A. (2022). An inductively coupled plasma optical emission spectrometric method for the determination of toxic and nutrient metals in spices after pressure-assisted digestion. Applied Sciences, 12, 534. https://doi.org/10.3390/app12020534

    Article  CAS  Google Scholar 

  • Masindi, V., & Muedi, K. (2018). Environmental Contamination by Heavy Metals. https://doi.org/10.5772/intechopen.76082

    Article  Google Scholar 

  • Mathew, J. T., Mamman, A., Musah, M., Azeh, Y., Inobeme, A., Umar, M. T., & Otori, A. A. (2022). assessment of selected heavy metal content on dumpsites soil and vegetables grown in Muwo Metropolis, Niger State, Nigeria. Journal of Applied Sciences and Environmental Management, 26(9), 1473–1478.

    Article  Google Scholar 

  • Meddings, N., Heinrich, M., Overney, F., & Lee, J. (2020). Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. Journal of Power Sources, 480, 228742. https://doi.org/10.1016/j.jpowsour.2020.228742

  • Mei, C., & Ahmad, S. (2021), A review on the determination heavy metals ions using calixarene-based electrochemical sensors. Arabian Journal of Chemistry, 14(9) 103303. https://doi.org/10.1016/j.arabjc.2021.103303

  • Mejias, E., & Garrido, T. (2016). Analytical Procedures for Determining Heavy Metal Contents in Honey: A Bioindicator of Environmental Pollution. https://doi.org/10.5772/66328

    Article  Google Scholar 

  • Miedico, O., Lammarino, M., Tarallo, M., & Chiaravalle, E. (2016). Application of inductively coupled plasma–mass spectrometry for trace element characterisation of equine meats. 2888–2900. https://doi.org/10.1080/10942912.2016.1256304

  • Mohammed, E., Mohammed, T., & Mohammed, A. (2018). Optimization of instrument conditions for the analysis for mercury, arsenic, antimony and selenium by atomic absorption spectroscopy. MethodsX, 5, 824–833. https://doi.org/10.1016/j.mex.2018.07.016

    Article  Google Scholar 

  • Mohammed, R., Fahad, O., Homoda, A., & Gamal, A. (2016). Evaluation of some toxic metals in blood samples of smokers in Saudi Arabia by inductive coupled plasma mass spectrometry. Tropical Journal of Pharmaceutical Research, 15,(12) 2669–2673.

  • Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22, 3380. https://doi.org/10.3390/ijms22073380

    Article  CAS  Google Scholar 

  • Okonkwo, S. O., Jacob, J. O., Iyaka, Y. A., & Inobeme, A. (2021). Assessment of selected heavy metal concentrations in soils from a mining area in Minna. Niger State. Environmental Monitoring and Assessment, 193(3), 1–8.

    Google Scholar 

  • Okpara, E., Fayemi, O., Wojuola, O., Onwudiwe, D., & Ebenso,. (2022). Electrochemical detection of selected heavy metals in water: A case study of African experiences. RSC Advances, 12(40), 26319–26361.

    Article  CAS  Google Scholar 

  • Onakpa, M. M., Njan, A. A., & Kalu, O. C. (2018). A review of heavy metal contamination of food crops in Nigeria. Annals of Global Health, 84(3), 488–494. https://doi.org/10.29024/aogh.2314

  • Oti, W. (2016). Review of principles and applications of AAS, PIXE and XRF and their usefulness in environmental analysis of heavy metals. Journal of Applied Chemistry, 9(6), 15–17.

  • Palisoc, S., Bentulan, J., & Natividad, M. (2019). Determination of trace heavy metals in canned food using Graphene/AuNPs/[Ru(NH3)6]3+/Nafion modified glassy carbon electrodes. Journal of Food Measurement and Characterization, 13(1). https://doi.org/10.1007/s11694-018-9930-1

  • Palisoc, S. T., Vitto, R. I. M., & Noel, M. G. (2021). Highly sensitive determination of heavy metals in water prior to and after remediation using Citrofortunella Microcarpa. Science and Reports, 11, 1394. https://doi.org/10.1038/s41598-020-80672-9

    Article  CAS  Google Scholar 

  • Pandey, S., Sachan, S., & Singh, S. (2019). Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Materials Science for Energy Technologies, 2(3), 667–675. https://doi.org/10.1016/j.mset.2019.09.004Get

    Article  Google Scholar 

  • Petovar, B., Xhanari, K., & Finsgar m. (2017). A detailed electrochemical impedance spectroscopy study of a bismuth film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2017.12.020

    Article  Google Scholar 

  • Phadke, R. K., & Gaitonde, V. D. (2016). Analytical method validation for determination of heavy metal in capsule shell by using inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Advanced Research, 4, 447–456(ISSN 2320–5407). www.journalijar.com

  • Pingarron, J., Labuda, J., Barek, J., & brett C., Camoes M., and Hibbert B. (2019). Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019). Pure and Applied Chemistry. https://doi.org/10.1515/pac-2018-0109

    Article  Google Scholar 

  • Popovic, S., Pantelic, A., Milovanovic, Z., Milinkov, J., & Vidovic, M. (2017). Analysis of tea for metals by flame and graphite furnace atomic absorption spectrometry with multivariate analysis. Atomic Spectroscopy, 2619–2633. https://doi.org/10.1080/00032719.2017.1307849

  • Povarov, V., Kopylova, T., Sinyakova, M., & Rudko, V. (2021). Quantitative determination of trace heavy metals and selected rock-forming elements in porous carbon materials by the X-ray fluorescence method. ACS Omega, 6(38), 24595–24601. https://doi.org/10.1021/acsomega.1c03217

  • Profrock D. and Prange A. (2019). Inductively coupled plasma–mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: A review of challenges, solutions, and trends. 66, 8. https://doi.org/10.1366/12-06681

  • Pushie, M., Pickering, I., Korbas, M., & George, G. (2014). Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chemical Reviews, 114(17), 8499–8541.

    Article  CAS  Google Scholar 

  • RadaMendoza, M., Arciniegas-herrera, J., & Chito-Trujillo, D. (2019). Atomic absorption spectrometry for the quantification of cadmium in thermoformed and biodegradable flexible films made from cassava (Manihot esculenta crantz). Journal of thermoplastic composite materials, 34(5). https://doi.org/10.1177/0892705719850612

  • Rahman, M., Ahmed, Z., Seefat, S., Alam, R., & Idris, A. (2021). Assessment of heavy metal contamination in sediment at the newly established tannery industrial Estate in Bangladesh: A case study. Environmental Chemistry and Ecotoxicology., 4, 1–12. https://doi.org/10.1016/j.enceco.2021.10.001

    Article  CAS  Google Scholar 

  • Raimi, M. O., Sawyerr, H., Ezekwe, C., & Gabriel, S. (2022). Toxicants in water: Hydrochemical appraisal of toxic metals concentration and seasonal variation in drinking water quality in oil and gas field area of River State. Nigeria. https://doi.org/10.5772/intechopen.102656

    Article  Google Scholar 

  • Rhodes, C. J. (2019). Endangered elements, critical raw materials and conflict minerals. Chemosphere, 303(3), 135208. https://doi.org/10.1177/0036850419884

  • Ribeiro, B., Godinho, S., Silva, E., & Guilherme, R. (2017). Portable X-ray fluorescence (pXRF) applications in tropical Soil Science Ciênc. Agrotec, 41, 3. https://doi.org/10.1590/1413-70542017413000117

  • Sagagi, B., Bello, A., & Danyaya, H. (2022). Assessment of accumulation of heavy metals in soil, irrigation water, and vegetative parts of lettuce and cabbage grown along Wawan Rafi, Jigawa State. Nigeria. Environ Monit Assess., 194(10), 699. https://doi.org/10.1007/s10661-022-10360-w

    Article  CAS  Google Scholar 

  • Sandford, C., Edwards, M., Klunder, K., Hickey, D., Min, L., Koushik, B., Matthew, S., Sigman, White, H., & Minteer, D. (2019). A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. (Perspective) Chemistry Science, 10, 6404–6422. https://doi.org/10.1039/C9SC01545K

  • Sarojam, P., Hoult, D., & Chen, J. (2011). Heavy metal characterization of Chinese spices and herbs using GFAAS and CVAAS. Conference: Sustainability Today. https://doi.org/10.2495/ST110201

  • Saryati, S. (2009). Differential pulse anodic stripping voltammetry for determination of some heavy metals in uranium. Indonesian Journal of Chemistry, 145–154. https://doi.org/10.5599/jese.2014.0051

  • Scaeteanu, G., Maria, M., & Mot, A. (2021). An overview of methods used for quantification of heavy metal contents in vegetal samples. Romanian Journal of Ecology and Environmental Chemistry, 3, 2. https://doi.org/10.21698/rjeec.2021.201

  • Scandurra, A., & Mirabella, S. (2021). Square wave anodic stripping voltammetry applied to a nano-electrode for trace analysis of Pb(II) and Cd(II) ions in solution. IEEE Sensors Journal PP (99), 1–1. https://doi.org/10.1109/JSEN.2021.3051762

  • Senila, M., Neag, E., Cadar, O., Kovacs, E. D., Aschilean, I., & Kovacs, M. H. (2022). Simultaneous removal of heavy metals (Cu, Cd, Cr, Ni, Zn and Pb) from aqueous solutions using thermally treated romanian zeolitic volcanic tuff. Molecules, 27, 3938. https://doi.org/10.3390/molecules2712393

    Article  CAS  Google Scholar 

  • Shaheen, M., Tawfik, W., Mankola, A., & El-Mekawy, F. (2022). Assessment of contamination levels of heavy metals in the agricultural soils using ICP-OE. Soil and Sediment Contamination (formerly Journal of Soil Contamination), 16. https://doi.org/10.1080/15320383.2022.2123448

  • Sharma, I. (2010). ICP-OES: An advance tool in biological research. Open Journal of Environmental Biology. https://doi.org/10.17352/ojeb.000018

    Article  Google Scholar 

  • Silva, J., Queiroz, A., Oliveira, A., & Kartnaller, V. (2017). Advances in the application of spectroscopic techniques in the biofuel are over the last few decades. Frontiers in Bioenergy and Biofuels. https://doi.org/10.5772/65552

    Article  Google Scholar 

  • Simiao, D., Andrade, F., Lima, W., Jesus, M., Dorim, P., & Paiva, M. (2022). Determination of mercury concentration by a new spectrophotometric method and evaluation of bacterial diversity in river water samples from Brazil. Water supply, 22(5), 5535–5548. https://doi.org/10.2166/ws.2022.173

  • Sisay, B., Debebe, E., & Meresa, A. (2019). Analysis of cadmium and lead using atomic absorption spectrophotometer in roadside soils of jimma town. Journal of Analytical and Pharmaceutical Research, 8(4), 144-147. https://doi.org/10.15406/japlr.2019.08.00329

  • Somogyi, A., & Mocuta, C. (2015). Possibilities and challenges of scanning hard X-ray Spectro-microscopy techniques in material sciences. AIMS Materials Science, 2(2), 122–162. https://doi.org/10.3934/matersci.2015.2.122

    Article  CAS  Google Scholar 

  • Srogi, K., & Baranowska, I. (2000). Determination of heavy metals in samples of moss by DPV. Polish Journal of Environmental Studies, 9(4), 329–333.

    Google Scholar 

  • Stortini, A., Baldo, M., Moro, G., & Moretto, L. (2020). Bio- and biomimetic receptors for electrochemical sensing of heavy metal ions. Sensors (basel)., 20(23), 6800. https://doi.org/10.3390/s20236800

    Article  CAS  Google Scholar 

  • Tamayo A., Gua A., Vidal J. and Maccini M. (2014)Analytical method for heavy metal determination in algae and turtle eggs from Guanahacabibes Protected Sea Park . 4, no. 4

  • Tesfaaye, E., Chandravanshi, B., & Tessema, M. (2021). Square wave anodic stripping voltammetric determination of Hg(II) with N1-Hydroxy-N1,N2-diphenylbenzamidine modified carbon paste electrode. Electroanalysis, 34,(5) 892–903. https://doi.org/10.1002/elan.202100468

  • Tholkappian M., Ravisankar R., Chandrasekaran A., Jebakumar, P., & Satapathy, K. (2018). Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF) with statistical approach. Toxicology Reports, 5, 173–182. https://doi.org/10.1016/j.toxrep.2017.12.020

  • Tibebe, D., Hussen, M., Mulugeta, M., & Kassa, Y. (2022). Assessment of selected heavy metals in honey samples using atomic absorption spectroscopy (AAS), Ethiopia. BMC Chemistry, 16, 87. https://doi.org/10.21203/rs.3.rs-1682495/v

  • Tytla, M., Widziewicz-Rzoca, K., & Bernas, Z. (2022). A comparison of conventional and ultrasound-assisted BCR sequential extraction methods for the fractionation of heavy metals in sewage sludge of different characteristics. Molecule, 27(15), 4947. https://doi.org/10.3390/molecules27154947

  • Uddin, A. H., Khalid, R. S., & Alaama, M. (2016). Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry. Journal of Analytical Science and Technology, 7, 6. https://doi.org/10.1186/s40543-016-0085-6

    Article  CAS  Google Scholar 

  • Ullah, A. K. M. A., Maksud, M. A., & Khan, S. R. (2017). Development and validation of a GF-AAS method and its application for the trace level determination of Pb, Cd, and Cr in fish feed samples commonly used in the hatcheries of Bangladesh. Journal of Analytical Science and Technology, 8, 15. https://doi.org/10.1186/s40543-017-0124-y

    Article  CAS  Google Scholar 

  • Vito-Francesco, E., Alessandro, F., Qiuyue, Y., Bhawna, N., Ruslan, Á., Arben, M., Thorsten, K., Alexander, H., Wolfgang, Stach, Falko, Z., & Roza, A. (2022) An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water. Environmental Monitoring and Assessment, 194(2), 122. https://doi.org/10.1007/s10661-021-09738-z

  • Voica, C., Dehelean, A., & Kovacs, M. H. (2012). The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. AIP Conference Proceedings, 1425, 110. https://doi.org/10.1063/1.3681979\

    Article  CAS  Google Scholar 

  • Wilschefski, S., & Baxter, A. (2019). Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clinical Biochemist Reviews, 40(3), 115–133. https://doi.org/10.33176/AACB-19-00024

    Article  Google Scholar 

  • Wobrauschek, P. (2007). X-ray fluorescence-energy dispersive (ED-XRF) and wavelength dispersive (WD-XRF) spectrometry. https://doi.org/10.1093/oxfordhb/9780199681532.013.21

  • Xie, R., Zhou, L., Lan, C., Fan, F., Xie, R., Tan, H., Xie, T., & Zhao, L. (2018). Nanostructured Carbon Black for Simultaneous Electrochemical Determination of Trace Lead and Cadmium by Differential Pulse Stripping Voltammetry. https://doi.org/10.1098/rsos.180282

    Article  Google Scholar 

  • Yao, M., Wang, D., & Zhao, M. (2015). Element analysis based on energy-dispersive X-ray fluorescence. Advances in Materials Science and Engineering, 1, 7. https://doi.org/10.1155/2015/290593

    Article  CAS  Google Scholar 

  • Yuan, Y., Liu, B., & Liu, H. (2022). Spatial distribution and source identification for heavy metals in surface sediments of East Dongting Lake, China. Scientific Reports, 12, 7940. https://doi.org/10.1038/s41598-022-12148-x

    Article  CAS  Google Scholar 

  • Zhao, G., Tran, T., Modha, S., & Mulchandani, A. (2022). Multiplexed anodic stripping voltammetry detection of heavy metals in water using nanocomposites modified screen-printed electrodes integrated with a 3D-printed flow cell. Frontier Chemistry, 17, 10:815805. https://doi.org/10.3389/fchem.2022.815805. eCollection 2022.

Download references

Acknowledgements

All the authors are grateful to the various authors whose works were used as the source of information in writing this review work. They are also thankful to their respective institutions for the enabling research environment.

Author information

Authors and Affiliations

Authors

Contributions

Abel Inobeme, Tsado John Mathew, Ejeomo Jatto, Jonathan Inobeme, and Charles Adetunji contributed through conceptualization, investigation, resources, data curation, and writing. Maliki Muniratu, Benedict Onyeachu, Adekoya Mathew, Alexander Ajai, Mann Abdullahi, Eric Olori, Eziukwu Chinenye, Kelani Tawakalit, and Omali Iheanyichukwu Paul made their input by resources, writing – original draft preparation. Akhor Sadiq and all the authors revised the manuscript.

Corresponding author

Correspondence to Abel Inobeme.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inobeme, A., Mathew, J.T., Jatto, E. et al. Recent advances in instrumental techniques for heavy metal quantification. Environ Monit Assess 195, 452 (2023). https://doi.org/10.1007/s10661-023-11058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11058-3

Keywords

Navigation