Skip to main content
Log in

Animal manure as a biostimulant in bioremediation of oil-contaminated soil: the role of earthworms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human dire need for environmental sustainability have triggered researchers to seek for organic substrates as an alternative to synthetic fertilizers in order to enhance bioremediation. Presently, nitrogen-rich organic substrate not only proffered the solution but also have proven useful in enhancing the rate of bioremediation. Animal manure is a nitrogen-rich organic substrate which has been found very effective for stimulating plant growth. Some of the animal manure used by researchers are poultry droppings, cow dung, goat manure, and pig manure. In all the papers reviewed, it was gathered that animal manure enhances bioremediation by providing nutrients favoring microbial growth and activities responsible hydrocarbon degradation. However, of the four commonly used animal manure, poultry droppings was severally reported to be a better biostimulant. Also, animal manure when sun-dried and pulverized yielded better results. It was observed that animal manure serves as substrates for earthworms which further accelerates the potential of the earthworms to remediate the soil. Also, the pollution of soil by crude oil causes a surge in its carbon content which may slow down microbial growth and activities. Thorough review of literatures, however, indicates that animal manure is capable of providing appropriate nutrient concentrations to offset such imbalance. Studies continue to lay credence to the efficacy of animal manure in enhancing microbial growth and activities responsible for the biodegradation of hydrocarbons contained in crude oil. Furthermore, the co-application of animal manure with other bioremediation strategies, such as phytoremediation and vermiremediation, should be combined for effective bioremediation of oil-contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abioye, P. O., Aziz, A. A., & Agamuthu, P. (2010). Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water, Air, & Soil Pollution, 209(1), 173–179.

    Article  CAS  Google Scholar 

  • Abdulyekeen, K. A., Muhammad, I. M., Giwa, S. O., & Abdulsalam, S. (2016). Bioremediation of used motor oil contaminated soil using elephant and horse dung as stimulants. IOSR Journal of Environmental Science Toxicology and Food Technology10(12), 73–78.

  • Abulude, F. O., Couple, A. A., Dafiewhare, B. H., & Oyeneye, O. O. (2003). Compositional evaluation of livestock dung fed to pigs. Journal of the. Sustropics Tropical Agricultural Research, 6, 33–36.

    Google Scholar 

  • Adebusoye, S. A., Ilori, M. O., Amund, O. O., Teniola, O. D., & Olatope, S. O. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World Journal of Microbiology and Biotechnology, 23(8), 1149–1159.

    Article  CAS  Google Scholar 

  • Agarry, S. E., Owabor, C. N., & Yusuf, R. O. (2010). Bioremediation of soil artificially contaminated with petroleum hydrocarbon oil mixtures: Evaluation of the use of animal manure and chemical fertilizer. Bioremediation Journal, 14(4), 189–195.

    Article  CAS  Google Scholar 

  • Agarry, S. E., Owabor, C. N., & Yusuf, R. O. (2012). Enhanced bioremediation of soil artificially contaminated with kerosene: Optimization of biostimulation agents through statistical experimental design. Journal of Petroleum & Environmental Biotechnology, 3(3), 2–8.

    Article  Google Scholar 

  • Agarry, S. E., Aremu, M. O., & Aworanti, O. A. (2013). Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic wastes. Journal of Petroleum & Environmental Biotechnology, 4(02), 137.

    Article  Google Scholar 

  • Aghalibe, C. U., Igwe, J. C., & Obike, A. I. (2017). Studies on the removal of petroleum hydrocarbons (PHCs) from a crude oil impacted soil amended with cow dung, poultry manure and NPK fertilizer. Chemistry Research Journal, 2(4), 22–30.

    CAS  Google Scholar 

  • Aira, M., & Domínguez, J. (2008). Optimizing vermicomposting of animal wastes: Effects of rate of manure application on carbon loss and microbial stabilization. Journal of Environmental Management, 88(4), 1525–1529.

  • Aira, M., Monroy, F., & Domínguez, J. (2006). Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microbial Ecology, 52(4), 738–747.

    Article  Google Scholar 

  • Almutairi, M. (2019). Vermiremediation strategy for remediation of Kuwaiti oil contaminated soil. SN Applied Sciences, 1(11), 1–6.

    Article  CAS  Google Scholar 

  • Álvarez, L. M., Ruberto, L. A. M., Balbo, A. L., & Mac Cormack, W. P. (2017). Bioremediation of hydrocarbon-contaminated soils in cold regions: Development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Science of the Total Environment, 590, 194–203.

    Article  Google Scholar 

  • Ameh, A. O., Maina, N. S., Mohammed-Dabo, I. A., & Ande, J. M. (2013). Vermi-assisted bioremediation of used engine oil contaminated soil. ATBU Journal of Environmental Technology, 6(1), 33–41.

    Google Scholar 

  • Ameh, A. O., Mohammed-Dabo, I. A., Ibrahim, S., Ameh, J. B., Azienge, C. D., & Tanimu, Y. (2011). Earthworm survival in used engine oil contaminated soil spiked with manure. International Journal of Biological and Chemical Sciences, 5(3).

  • Arora, S., Saraswat, S., Rajpal, A., Shringi, H., Mishra, R., Sethi, J., & Kazmi, A. A. (2021). Effect of earthworms in reduction and fate of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) during clinical laboratory wastewater treatment by vermifiltration. Science of the Total Environment, 773, 145152.

    Article  CAS  Google Scholar 

  • Bahadure, S., Kalia, R., & Chavan, R. (2013). Comparative study of bioremediation of hydrocarbon fuels. Int J Biotechnol Bioeng Res, 4(7), 677–686.

    Google Scholar 

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(7), 723–736.

    Article  CAS  Google Scholar 

  • Bejarano, A. C., & Michel, J. (2010). Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill. Environmental Pollution, 158(5), 1561–1569.

    Article  CAS  Google Scholar 

  • Contreras-Ramos, S. M., Alvarez-Bernal, D., & Dendooven, L. (2006). Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environmental Pollution, 141(3), 396–401.

    Article  CAS  Google Scholar 

  • Cunningham, C. J., Kuyukina, M. S., Ivshina, I. B., Konev, A. I., Peshkur, T. A., & Knapp, C. W. (2020). Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environmental Science: Processes & Impacts, 22(5), 1110–1124.

    CAS  Google Scholar 

  • Dabke, S. V. (2013). Vermi-remediation of heavy metal-contaminated soil. Journal of Health and Pollution, 3(4), 4–10.

  • Dada, E. O., Akinola, M. O., Owa, S. O., Dedeke, G. A., Aladesida, A. A., Owagboriaye, F. O., & Oludipe, E. O. (2021). Efficacy of vermiremediation to remove contaminants from soil. Journal of Health and Pollution11(29).

  • Dada, E. O., Njoku, K. I., Osuntoki, A. A., & Akinola, M. O. (2015). A review of current techniques of physico-chemical and biological remediation of heavy metals polluted soil. Ethiopian Journal of Environmental Studies and Management, 8(5), 606–615.

    Article  Google Scholar 

  • Dada, E. O., Njoku, K. L., Osuntoki, A. A., & Akinola, M. O. (2016). Heavy metal remediation potential of a tropical wetland earthworm, Libyodrilus violaceus (Beddard).

  • Dados, A., Omirou, M., Demetriou, K., Papastephanou, C., & Ioannides, I. M. (2015). Rapid remediation of soil heavily contaminated with hydrocarbons: A comparison of different approaches. Annals of Microbiology, 65(1), 241–251.

    Article  CAS  Google Scholar 

  • Danjuma, B. Y., Abdulsalam, S., & Sulaiman, A. D. I. (2012). Kinetic investigation of Escravos crude oil contaminated soil using natural stimulants of plant source. International Journal of Emerging Trends in Engineering and Development, 5(2), 78–486.

    Google Scholar 

  • Datar, M. T., Rao, M. N., & Reddy, S. (1997). Vermicomposting—A technological option for solid waste management. Journal of Solid Waste Technology and Management, 24(2), 89–93.

    CAS  Google Scholar 

  • Doherty, F., & Aneyo, I. (2016). Stimulated biodegradation of waste lubicating oil in soil, using water hyacinth and goat droppings. Journal of Environmental and Occupational Health, 5(2), 47–52.

    Google Scholar 

  • Domínguez, J., Aira, M., & Gómez-Brandón, M. (2010). Vermicomposting: earthworms enhance the work of microbes. In Microbes at work (pp. 93–114). Springer, Berlin, Heidelberg.

  • Domínguez, J., Parmelee, R. W., & Edwards, C. A. (2003). Interactions between Eisenia andrei (Oligochaeta) and nematode populations during vermicomposting. Pedobiologia, 47(1), 53–60.

    Article  Google Scholar 

  • Edwards, C. A. (1998). The use of earthworms in the breakdown and management of organic wastes.

  • Emoyan, O. O. (2020). Bioremediation of in-situ crude oil contaminated soil using selected organic dung. Egyptian Journal of Chemistry, 63(8), 2827–92836.

    Google Scholar 

  • Enuneku, A. A., Anani, O. A., Job, O., Kubeyinje, B. F., Ogbomida, E. T., Asemota, C. O., & Hefft, D. I. (2021). Mapping soil susceptibility to crude oil pollution in the region of Delta, South-South Nigeria: A proportional study of environmetrics, health, ecological risks, and geospatial evaluation. Scientific African, 14, e01012.

    Article  CAS  Google Scholar 

  • Fraser-Quick, G. (2002). Vermiculture—A sustainable total waste management solution. What’s New inWaste Management, 4(6), 13–16.

    Google Scholar 

  • Gavrilescu, M. (2006). Overview of in situ remediation technologies for sites and groundwater. Environmental Engineering & Management Journal (EEMJ)5(1).

  • Geddes, B. A., Ryu, M. H., Mus, F., Costas, A. G., Peters, J. W., Voigt, C. A., & Poole, P. (2015). Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Current Opinion in Biotechnology, 32, 216–222.

    Article  CAS  Google Scholar 

  • Gupta, G., & Tao, J. (1996). Bioremediation of gasoline-contaminated soil using poultry litter. Journal of Environmental Science & Health Part A, 31(9), 2395–2407.

    Google Scholar 

  • Haimi, J., Salminen, J., Huhta, V., Knuutinen, J., & Palm, H. (1992). Bioaccumulation of organochlorine compounds in earthworms. Soil Biology and Biochemistry, 24(12), 1699–1703.

    Article  CAS  Google Scholar 

  • Ijah, U. J. J., & Antai, S. P. (2003). The potential use of chicken-drop micro-organisms for oil spill remediation. The Environmentalist, 23(1), 89–95.

    Article  Google Scholar 

  • Ikpe, F. N., & Powell, J. M. (2002). Nutrient cycling practices and changes in soil properties in the crop-livestock farming systems of western Niger Republic of West Africa. Nutrient Cycling in Agroecosystems, 62(1), 37–45.

    Article  Google Scholar 

  • Iyagba, A. G., & Offor, U. S. (2014). Effect of crude oil and biostimulant (bioremediation) on growth extract of maize (Zea mays (l.) and cowpea (Vignaunguiculata (l.) Walp). European Scientific Journal10(6).

  • Jin, Y., Luan, Y., Ning, Y., & Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Applied Sciences, 8(8), 1336.

    Article  Google Scholar 

  • Kauppi, S., Sinkkonen, A., & Romantschuk, M. (2011). Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: Comparison of biostimulation and bioaugmentation. International Biodeterioration & Biodegradation, 65(2), 359–368.

    Article  CAS  Google Scholar 

  • Kirchmann, H., & Witter, E. (1992). Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresource Technology, 40(2), 137–142.

    Article  CAS  Google Scholar 

  • Kumar, R., & Kaur, A. (2018). Oil spill removal by mycoremediation. In Microbial Action on Hydrocarbons (pp. 505–526). Springer, Singapore.

  • Leys, N., Bastiaens, L., Verstraete, W., & Springael, D. (2005). Influence of the carbon/nitrogen/phosphate-ratio on PAH-degradation by Mycobacterium and Sphingomonas strains in soil. Applied Microbiology and Biotechnology, 66(6), 726–736.

    Article  CAS  Google Scholar 

  • Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., & Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158(3–4), 173–180.

    Article  CAS  Google Scholar 

  • Lores, M., Gómez-Brandón, M., Pérez-Díaz, D., & Domínguez, J. (2006). Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biology and Biochemistry, 38(9), 2993–2996.

    Article  CAS  Google Scholar 

  • Maenpaa, K. A., Kukkonen, J. V. K., & Lydy, M. J. (2002). Remediation of heavy metal-contaminated soils using phosphorus: Evaluation of bioavailability using an earthworm bioassay. Archives of Environmental Contamination and Toxicology, 43(4), 0389–0398.

    Article  CAS  Google Scholar 

  • Martín-Gil, J., Gómez-Sobrino, E., Correa-Guimaraes, A., Hernández-Navarro, S., Sánchez-Báscones, M., & del Carmen Ramos-Sánchez, M. (2008). Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the Prestige oil spill. Bioresource Technology, 99(6), 1821–1829.

    Article  Google Scholar 

  • Moore, J. C., Berlow, E. L., Coleman, D. C., de Ruiter, P. C., Dong, Q., Hastings, A., & Wall, D. H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7(7), 584–600.

    Article  Google Scholar 

  • Muratova, A. Y., Dmitrieva, T. V., Panchenko, L. V., & Turkovskaya, O. V. (2008). Phytoremediation of oil-sludge–contaminated soil. International Journal of Phytoremediation, 10(6), 486–502.

    Article  CAS  Google Scholar 

  • Nikaeen, M., Nafez, A. H., Bina, B., Nabavi, B. F., & Hassanzadeh, A. (2015). Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Management, 39, 104–110.

    Article  CAS  Google Scholar 

  • Njoku, K. L., Akinola, M. O., & Anigbogu, C. C. (2016). Vermiremediation of soils contaminated with mixture of petroleum products using Eisenia fetida. Journal of Applied Sciences and Environmental Management, 20(3), 771–779.

    Article  Google Scholar 

  • Nwogu, T. P., Azubuike, C. C., & Ogugbue, C. J. (2015). Enhanced bioremediation of soil artificially contaminated with petroleum hydrocarbons after amendment with Capra aegagrus hircus (goat) manure. Biotechnology research international2015.

  • Obiakalaije, U. M., Makinde, O. A., & Amakoromo, E. R. (2015). Bioremediation of crude oil polluted soil using animal waste. International Journal of Environmental Bioremediation & Biodegradation, 3(3), 79–85.

    CAS  Google Scholar 

  • Ogboghodo, I. A., Erebor, E. B., Osemwota, I. O., & Isitekhale, H. H. (2004). The effects of application of poultry manure to crude oil polluted soils on maize (Zea mays) growth and soil properties. Environmental Monitoring and Assessment, 96(1), 153–161.

    Article  CAS  Google Scholar 

  • Okoh, A. I. (2006). Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Reviews, 1(2), 38–50.

    Google Scholar 

  • Okolo, J. C. (2005). Odu, Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. In Applied ecology and environmental research.

  • Omoni, V. T., Aguoru, C. U., Edoh, E. O., & Makinde, O. (2015). Biostimulation of hydrocarbon utilizing bacteria in soil contaminated with spent engine oil using banana and plantain agro-wastes. Journal of Soil Science and Environmental Management, 6(8), 225–233.

    Google Scholar 

  • Onuoha, S. C., Chukwura, E. I., & Fatokun, K. (2014). Stimulated biodegradation of spent lubricating motor oil in soil amended with animal droppings. American Journal of BioScience, 2(1), 19–27.

    Article  CAS  Google Scholar 

  • Onuoha, S. C., Olugbue, V. U., Uraku, J. A., & Uchendu, D. O. (2011). Biodegradation potentials of hydrocarbon degraders from waste lubricating oil-spilled soils in Ebonyi State. Nigeria. Int. J. Agric. Biol, 13, 586–590.

    CAS  Google Scholar 

  • Owa, S. O., Olowoparija, S. B., Aladesida, A., & Dedeke, G. A. (2013). Enteric bacteria and fungi of the Eudrilid earthworm Libyodrilus violaceus. African Journal of Agricultural Research, 8(17), 1760–1766.

    Article  Google Scholar 

  • Pagliari, P. H., & Laboski, C. A. (2012). Investigation of the inorganic and organic phosphorus forms in animal manure. Journal of Environmental Quality, 41(3), 901–910.

    Article  CAS  Google Scholar 

  • Powell, J. M., Ikpe, F. N., Somda, Z. C., & Fernandez-Rivera, S. (1998). Urine effects on soil chemical properties and the impact of urine and dung on pearl millet yield. Experimental Agriculture, 34(3), 259–276.

    Article  Google Scholar 

  • Rahman, K. S. M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85(3), 257–261.

    Article  CAS  Google Scholar 

  • Rajadurai, M., Karmegam, N., Kannan, S., Yuvaraj, A., & Thangaraj, R. (2022). Vermiremediation of engine oil contaminated soil employing indigenous earthworms, Drawida modesta and Lampito mauritii. Journal of Environmental Management, 301, 113849.

    Article  CAS  Google Scholar 

  • Rajiv K, S., Sunita, A., Krunal, C., Vinod, C., & Brijal Kiranbhai, S. (2010). Vermiculture technology: Reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technology and Investment2010.

  • Randhawa, G. K., & Kullar, J. S. (2011). Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. International Scholarly Research Notices2011.

  • Ravindran, B., Contreras-Ramos, S. M., & Sekaran, G. (2015). Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecological Engineering, 74, 394–401.

    Article  Google Scholar 

  • Roshandel, F., Saadatmand, S., Iranbakhsh, A., & Ardebili, Z. O. (2021). Mycoremediation of oil contaminant by Pleurotus florida (P. Kumm) in liquid culture. Fungal Biology125(9), 667–678.

  • Ruley, J. A., Amoding, A., Tumuhairwe, J. B., Basamba, T. A., Opolot, E., & Oryem-Origa, H. (2020). Enhancing the phytoremediation of hydrocarbon-contaminated soils in the Sudd wetlands, South Sudan, using organic manure. Applied and Environmental Soil Science2020.

  • Schaefer, M. (2001). Earthworms in crude oil contaminated soils: Toxicity tests and effects on crude oil degradation. Soil, Sediment and Water, 8, 35–37.

    Google Scholar 

  • Schaefer, M., & Juliane, F. (2007). The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology, 36(1), 53–62.

    Article  Google Scholar 

  • Silva-Castro, G. A., Rodelas, B., Perucha, C., Laguna, J., González-López, J., & Calvo, C. (2013). Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: Assays in a pilot plant. Science of the Total Environment, 445, 347–355.

    Article  Google Scholar 

  • Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49–58.

    Article  CAS  Google Scholar 

  • Singleton, D. R., Hendrix, P. F., Coleman, D. C., & Whitman, W. B. (2003). Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biology and Biochemistry, 35(12), 1547–1555.

    Article  CAS  Google Scholar 

  • Sinha, R. K., Bharambe, G., & Ryan, D. (2008). Converting wasteland into wonderland by earthworms—A low-cost nature’s technology for soil remediation: A case study of vermiremediation of PAHs contaminated soil. The Environmentalist, 28(4), 466–475.

    Article  Google Scholar 

  • Sinha, R. K., Chauhan, K., Valani, D., Chandran, V., Soni, B. K., & Patel, V. (2010). Earthworms: Charles Darwin’s ‘unheralded soldiers of mankind’: Protective & productive for man & environment. Journal of Environmental Protection, 1(03), 251.

    Article  Google Scholar 

  • Swindoll, C. M., Aelion, C. M., & Pfaender, F. K. (1988). Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Applied and Environmental Microbiology, 54(1), 212–217.

    Article  CAS  Google Scholar 

  • Tiquia, S. M., & Tam, N. F. (2002). Characterization and composting of poultry litter in forced-aeration piles. Process Biochemistry, 37(8), 869–880.

    Article  CAS  Google Scholar 

  • Udebuani, A. C., Okoli, C. I., Nwigwe, H. C., & Ozoh, P. T. E. (2012). The value of animal manure in the enhancement of bioremediation processes in petroleum hydrocarbon contaminated agricultural soils. Journal of Agricultural Technology, 8(6), 1935–1952.

    Google Scholar 

  • Udikovic-Kolic, N., Wichmann, F., Broderick, N. A., & Handelsman, J. (2014). Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proceedings of the National Academy of Sciences, 111(42), 15202–15207.

  • Valle-Molinares, R., Borges, S., & Rios-Velazquez, C. (2007). Characterization of possible symbionts in Onychochaeta borincana (Annelida: Glossoscolecidae). European Journal of Soil Biology, 43, S14–S18.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.

    Article  Google Scholar 

  • Van Horn, H. H., Wilkie, A. C., Powers, W. J., & Nordstedt, R. A. (1994). Components of dairy manure management systems. Journal of Dairy Science, 77(7), 2008–2030.

    Article  Google Scholar 

  • Vidali, M. (2001). Bioremediation. An Overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Wilkerson, V. A., Mertens, D. R., & Casper, D. P. (1997). Prediction of excretion of manure and nitrogen by Holstein dairy cattle. Journal of Dairy Science, 80(12), 3193–3204.

    Article  CAS  Google Scholar 

  • Williams, C. M., Grimes, J. L., & Mikkelsen, R. L. (1999). The use of poultry litter as co-substrate and source of inorganic nutrients and microorganisms for the ex situ biodegradation of petroleum compounds. Poultry Science, 78(7), 956–964.

  • Yakubu, M. (2007). Biodegradation of Lagoma crude oil using pig dung. African Journal of Biotechnology6(24).

  • Yusuf, K., & Yahaya, S. (2022). Biostimulation of hydrocarbon-utilizing bacteria in soil amended with spent engine oil using Citrullus lanatus and Citrus sinensis peels agro-wastes. Nigerian Journal of Microbiology.

  • Zhu, D., Delgado-Baquerizo, M., Su, J. Q., Ding, J., Li, H., Gillings, M. R., & Zhu, Y. G. (2021). Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environmental Science & Technology, 55(11), 7445–7455.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea for the review came from my supervisor, Prof. Francis Arimoro while the literature search and draft were done by me.

Corresponding author

Correspondence to John A. Adewoyin.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Consent to participate

We wish to participate in the review process.

Consent to publish

We hereby give the Publisher the exclusive license to publish this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewoyin, J.A., Arimoro, F.O. Animal manure as a biostimulant in bioremediation of oil-contaminated soil: the role of earthworms. Environ Monit Assess 195, 293 (2023). https://doi.org/10.1007/s10661-022-10884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10884-1

Keywords

Navigation